Materials and processing issues in vertical GaN power electronics

Abstract Silicon-based power devices are reaching their fundamental performance limit. The use of wide-bandgap semiconductors with superior material properties over silicon offers the potential for power electronic systems with much higher power densities and higher conversion efficiency. GaN, with a high critical electric field and carrier mobility, is considered one of the most promising candidates for future high-power, high frequency and high temperature applications. High voltage transistors and diodes based on both lateral and vertical structures are of great interest for future power electronics. Particularly, vertical GaN power devices have recently attracted increasing attention due to their many unique properties. This paper reviews recent progress and key remaining challenges towards the development of high-performance vertical GaN transistors and diodes with emphasis on the materials and processing issues related to each device architecture.

[1]  Daniel Piedra,et al.  High-Performance 500 V Quasi- and Fully-Vertical GaN-on-Si pn Diodes , 2017, IEEE Electron Device Letters.

[2]  Fritz J. Kub,et al.  Activation of Mg implanted in GaN by multicycle rapid thermal annealing , 2014 .

[3]  Daniel Piedra,et al.  Trench formation and corner rounding in vertical GaN power devices , 2017 .

[4]  Keith R. Evans,et al.  GaN Substrates for III-Nitride Devices , 2010, Proceedings of the IEEE.

[5]  S. Decoutere,et al.  Statistical Analysis of the Impact of Anode Recess on the Electrical Characteristics of AlGaN/GaN Schottky Diodes With Gated Edge Termination , 2016, IEEE Transactions on Electron Devices.

[6]  Tohru Oka,et al.  Over 10 a operation with switching characteristics of 1.2 kV-class vertical GaN trench MOSFETs on a bulk GaN substrate , 2016, 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD).

[7]  Jordan D. Greenlee,et al.  Selective p-type Doping of GaN:Si by Mg Ion Implantation and Multicycle Rapid Thermal Annealing , 2016 .

[8]  Daniel Piedra,et al.  Vertical GaN Junction Barrier Schottky Rectifiers by Selective Ion Implantation , 2017, IEEE Electron Device Letters.

[9]  Tetsuzo Ueda,et al.  1.7 kV/1.0 mΩcm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[10]  T. Mishima,et al.  Impact of crystal-quality improvement of epitaxial wafers on RF and power switching devices by utilizing VAS-method grown GaN substrates with low-density and uniformly distributed dislocations , 2013 .

[11]  Daniel Piedra,et al.  Origin and Control of OFF-State Leakage Current in GaN-on-Si Vertical Diodes , 2015, IEEE Transactions on Electron Devices.

[12]  Guido Groeseneken,et al.  Performance Optimization of Au-Free Lateral AlGaN/GaN Schottky Barrier Diode With Gated Edge Termination on 200-mm Silicon Substrate , 2016, IEEE Transactions on Electron Devices.

[13]  A. Yamaguchi,et al.  Growth and strain characterization of high quality GaN crystal by HVPE , 2012 .

[14]  Tetsu Kachi,et al.  GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistor Fabricated with Novel Wet Etching , 2008 .

[15]  U. Mishra,et al.  The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs , 2001 .

[16]  U. Mishra,et al.  Enhancement and Depletion Mode AlGaN/GaN CAVET With Mg-Ion-Implanted GaN as Current Blocking Layer , 2008, IEEE Electron Device Letters.

[17]  Yu Cao,et al.  600 V/ $1.7~\Omega$ Normally-Off GaN Vertical Trench Metal–Oxide–Semiconductor Field-Effect Transistor , 2016, IEEE Electron Device Letters.

[18]  B. J. Baliga,et al.  Semiconductors for high‐voltage, vertical channel field‐effect transistors , 1982 .

[19]  Takehiro Yoshida,et al.  Vertical GaN p-n Junction Diodes With High Breakdown Voltages Over 4 kV , 2015, IEEE Electron Device Letters.

[20]  T. Palacios,et al.  High-Performance GaN Vertical Fin Power Transistors on Bulk GaN Substrates , 2017, IEEE Electron Device Letters.

[21]  K. Lau,et al.  Fully- and Quasi-Vertical GaN-on-Si p-i-n Diodes: High Performance and Comprehensive Comparison , 2017, IEEE Transactions on Electron Devices.

[22]  A. P. Zhang,et al.  High voltage GaN Schottky rectifiers , 1999 .

[23]  Jordan D. Greenlee,et al.  Symmetric Multicycle Rapid Thermal Annealing: Enhanced Activation of Implanted Dopants in GaN , 2015 .

[24]  H. Amano,et al.  DX-like behavior of oxygen in GaN , 2001 .

[25]  S. Decoutere,et al.  Au-free CMOS-compatible AlGaN/GaN HEMT processing on 200 mm Si substrates , 2012, 2012 24th International Symposium on Power Semiconductor Devices and ICs.

[26]  T. Mishima,et al.  Freestanding GaN Wafers by Hydride Vapor Phase Epitaxy Using Void-Assisted Separation Technology , 2010 .

[27]  Takashi Egawa,et al.  Novel fully vertical GaN p–n diode on Si substrate grown by metalorganic chemical vapor deposition , 2016 .

[28]  M. Willander,et al.  III–nitrides: Growth, characterization, and properties , 2000 .

[29]  A. Zubair,et al.  Novel GaN trench MIS barrier Schottky rectifiers with implanted field rings , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[30]  Atul Mahajan,et al.  Design and optimization of junction termination extension (JTE) for 4H–SiC high voltage Schottky diodes , 2005 .

[31]  Gan Feng,et al.  Space-Modulated Junction Termination Extension for Ultrahigh-Voltage p-i-n Diodes in 4H-SiC , 2012, IEEE Transactions on Electron Devices.

[32]  D. Bour,et al.  1.5-kV and 2.2-m (Omega ) -cm (^{2}) Vertical GaN Transistors on Bulk-GaN Substrates , 2014 .

[33]  B. J. Baliga,et al.  Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.

[34]  Huili Grace Xing,et al.  GaN-on-GaN p-n power diodes with 3.48 kV and 0.95 mΩ-cm2: A record high figure-of-merit of 12.8 GW/cm2 , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[35]  I. C. Kizilyalli,et al.  Avalanche Capability of Vertical GaN p-n Junctions on Bulk GaN Substrates , 2015, IEEE Electron Device Letters.

[36]  A. Furukawa,et al.  Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2 kV , 2017 .

[37]  Power Electronics Converters , 2018, IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society.

[38]  Y. Aoyagi,et al.  Straight and Smooth Etching of GaN (1100) Plane by Combination of Reactive Ion Etching and KOH Wet Etching Techniques , 2006 .

[39]  Yugang Zhou,et al.  High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment , 2005, IEEE Electron Device Letters.

[40]  Yoshinao Kumagai,et al.  Preparation of Large Freestanding GaN Substrates by Hydride Vapor Phase Epitaxy Using GaAs as a Starting Substrate : Semiconductors , 2001 .

[41]  B. Jayant Baliga,et al.  Fundamentals of Power Semiconductor Devices , 2008 .

[42]  David I. Shahin,et al.  Vertical GaN Junction Barrier Schottky Diodes , 2017 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  I. C. Kizilyalli,et al.  4-kV and 2.8- $\text{m}\Omega $ -cm2 Vertical GaN p-n Diodes With Low Leakage Currents , 2015, IEEE Electron Device Letters.

[45]  T. Mishima,et al.  Roles of lightly doped carbon in the drift layers of vertical n-GaN Schottky diode structures on freestanding GaN substrates , 2015 .

[46]  K. Matocha,et al.  High-voltage normally off GaN MOSFETs on sapphire substrates , 2005, IEEE Transactions on Electron Devices.

[47]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[48]  Hirotaka Otake,et al.  Vertical GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistors on GaN Bulk Substrates , 2008 .

[49]  N. Matsumoto,et al.  Dislocation reduction in GaN crystal by advanced-DEEP , 2007 .

[50]  G. Verzellesi,et al.  Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives , 2008, IEEE Transactions on Device and Materials Reliability.

[51]  U. K. Mishra,et al.  SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1−xN , 2000 .

[52]  U. K. Mishra,et al.  CAVET on Bulk GaN Substrates Achieved With MBE-Regrown AlGaN/GaN Layers to Suppress Dispersion , 2012, IEEE Electron Device Letters.

[53]  M. Abraham,et al.  Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN , 2012 .

[54]  Guido Groeseneken,et al.  Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode , 2015 .

[55]  Umesh K. Mishra,et al.  AlGaN/GaN current aperture vertical electron transistors with regrown channels , 2004 .

[56]  K. Lau,et al.  Breakdown Ruggedness of Quasi-Vertical GaN-Based p-i-n Diodes on Si Substrates , 2016, IEEE Electron Device Letters.

[57]  Tore Undeland,et al.  Power Electronics: Converters, Applications and Design , 1989 .

[58]  S. Decoutere,et al.  On the Identification of Buffer Trapping for Bias-Dependent Dynamic $R_{\mathrm{\scriptscriptstyle ON}}$ of AlGaN/GaN Schottky Barrier Diode With AlGaN:C Back Barrier , 2016, IEEE Electron Device Letters.

[59]  Koji Katayama,et al.  Extremely Low On-Resistance and High Breakdown Voltage Observed in Vertical GaN Schottky Barrier Diodes with High-Mobility Drift Layers on Low-Dislocation-Density GaN Substrates , 2010 .

[60]  T. Palacios,et al.  GaN-on-Si Vertical Schottky and p-n Diodes , 2014, IEEE Electron Device Letters.

[61]  Alan Francis Wright,et al.  Substitutional and interstitial oxygen in wurtzite GaN , 2002 .

[62]  U. Mishra,et al.  In Situ Oxide, GaN Interlayer-Based Vertical Trench MOSFET (OG-FET) on Bulk GaN substrates , 2017, IEEE Electron Device Letters.

[63]  J. Glaser,et al.  GaN Transistors for Efficient Power Conversion , 2019 .

[64]  Dirk Wellekens,et al.  Au-Free AlGaN/GaN Power Diode on 8-in Si Substrate With Gated Edge Termination , 2013, IEEE Electron Device Letters.

[65]  Xing Lu,et al.  Fully Vertical GaN p-i-n Diodes Using GaN-on-Si Epilayers , 2016, IEEE Electron Device Letters.

[66]  G. Meneghesso,et al.  Instability of Dynamic- $R_{\text ON}$ and Threshold Voltage in GaN-on-GaN Vertical Field-Effect Transistors , 2017, IEEE Transactions on Electron Devices.

[67]  D. Jena,et al.  Design and Realization of GaN Trench Junction-Barrier-Schottky-Diodes , 2017, IEEE Transactions on Electron Devices.

[68]  F. Gao,et al.  Electrothermal Simulation and Thermal Performance Study of GaN Vertical and Lateral Power Transistors , 2013, IEEE Transactions on Electron Devices.

[69]  S. Decoutere,et al.  200mm GaN-on-Si epitaxy and e-mode device technology , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[70]  H. Ishida,et al.  Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation , 2007, IEEE Transactions on Electron Devices.

[71]  T. Oka,et al.  Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV , 2014 .

[72]  Daniel S. Green,et al.  Memory Effect and Redistribution of Mg into Sequentially Regrown GaN Layer by Metalorganic Chemical Vapor Deposition , 2003 .

[73]  Kensaku Motoki Development of Gallium Nitride Substrates , 2010 .

[74]  R. V. Mickevicius,et al.  Design space and origin of off-state leakage in GaN vertical power diodes , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[75]  D. Bour,et al.  Vertical Power p-n Diodes Based on Bulk GaN , 2015, IEEE Transactions on Electron Devices.