COLLOCATION METHODS FOR SYSTEMS OF CAUCHY SINGULAR INTEGRAL EQUATIONS ON AN INTERVAL
暂无分享,去创建一个
[1] G. Pedersen. C-Algebras and Their Automorphism Groups , 1979 .
[2] B. Silbermann,et al. Numerical Analysis for Integral and Related Operator Equations , 1991 .
[3] S. Roch. Algebras of approximation sequences: fractality , 2001 .
[4] R. Douglas. Banach Algebra Techniques in Operator Theory , 1972 .
[5] P. Junghanns,et al. Banach Algebra Techniques For CauchySingular Integral Equations On An Interval , 1997 .
[6] P. Junghanns,et al. A collocation method for nonlinear Cauchy singular integral equations , 2000 .
[7] I. Gohberg,et al. One-Dimensional Linear Singular Integral Equations , 1992 .
[8] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[9] B. Silbermann,et al. Local theory of the collocation method for the approximate solution of singular integral equations, I , 1984 .
[10] L. Coburn. The $C^*$-algebra generated by an isometry , 1967 .
[11] G. Allan,et al. Ideals of Vector‐Valued Functions , 1968 .
[12] B. Silbermann,et al. Index Calculus for Approximation Methods and Singular Value Decomposition , 1998 .
[13] Bernd Silbermann,et al. Lokale Theorie des Reduktionsverfahrens für Toeplitzoperatoren , 1981 .
[14] U. Neri. Singular integral operators , 1971 .
[15] P. Junghanns,et al. Local theory of a collocation method for Cauchy singular integral equations on an interval , 1998 .
[16] S. Roch. Spectral Theory of Approximation Methods for Convolution Equations , 1994 .
[17] S. Roch. Algebras of approximation sequences: Fredholmness , 1999 .