A transport-velocity formulation for smoothed particle hydrodynamics

The standard weakly-compressible SPH method suffers from particle clumping and void regions for high Reynolds number flows and when negative pressures occur in the flow. As a remedy, a new algorithm is proposed that combines the homogenization of the particle configuration by a background pressure while at the same time reduces artificial numerical dissipation. The transport or advection velocity of particles is modified and an effective stress term occurs in the momentum balance that accounts for the difference between advection velocity times particle density and actual particle momentum. The present formulation can be applied for internal flows where the density summation is applicable. A wide range of test cases demonstrates unprecedented accuracy and stability of the proposed modification even at previously infeasible conditions.

[1]  H. Posch,et al.  Viscous conducting flows with smooth-particle applied mechanics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[3]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[4]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[5]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[6]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[7]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[8]  Ivo F. Sbalzarini,et al.  PPM - A highly efficient parallel particle-mesh library for the simulation of continuum systems , 2006, J. Comput. Phys..

[9]  Nikolaus A. Adams,et al.  SPH simulations of flow around a periodic array of cylinders confined in a channel , 2011 .

[10]  Darryl D. Holm Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion , 1999, chao-dyn/9903034.

[11]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[12]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[13]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[14]  A. Colagrossi,et al.  δ-SPH model for simulating violent impact flows , 2011 .

[15]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[16]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[17]  Nikolaus A. Adams,et al.  A conservative SPH method for surfactant dynamics , 2010, J. Comput. Phys..

[18]  Hansen On the Construction of New Lunar Tables, and on some points in the Lunar Theory depending on the Conformation of the Moon with respect to its Centre of Gravity , 1854 .

[19]  John Biddiscombe,et al.  Visualization and analysis of SPH data , 2008 .

[20]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[21]  Nikolaus A. Adams,et al.  A constant-density approach for incompressible multi-phase SPH , 2009, J. Comput. Phys..

[22]  Robert C. Armstrong,et al.  Viscoelastic flow of polymer solutions around a periodic, linear array of cylinders: comparisons of predictions for microstructure and flow fields , 1998 .

[23]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[24]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[25]  S. J. Lind,et al.  Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves , 2012, J. Comput. Phys..

[26]  Timothy D. Scheibe,et al.  Simulations of reactive transport and precipitation with smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[27]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[28]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[29]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[30]  J. Monaghan,et al.  A turbulence model for Smoothed Particle Hydrodynamics , 2009, 0911.2523.