A Priori Truncation Error Estimates for Stieltjes Fractions
暂无分享,去创建一个
Stieltjes fractions are here studied in the form K(a n z/1), a n > 0, n ≥ 1. They provide expansions for many useful functions and have integral representations
$$ \int\limits_0^\infty {\frac{{zd\psi (t)}}{{1 + zt}}} $$
.
[1] W. J. Thron. On parabolic convergence regions for continued fractions , 1958 .
[2] W. J. Thron,et al. Accelerating convergence of limit periodic continued fractionsK(an/1) , 1980 .
[3] Peter Henrici,et al. Truncation error estimates for Stieltjes fractions , 1966 .
[4] É. Christoffel,et al. Sur une classe particulière de fonctions entières et de fractions continues , 2022 .
[5] William B. Jones,et al. Numerical stability in evaluating continued fractions , 1974 .