Towards twin-free molecular beam epitaxy of 2D chalcogenides explained by stronger interlayer van der Waals coupling

Defect-free epitaxial growth of 2D materials is one of the holy grails for a successful integration of van der Waals (vdW) materials in the semiconductor industry. The large-area (quasi-)vdW epitaxy of layered 2D chalcogenides is consequently carefully being researched since these materials hold very promising properties for future nanoelectronic applications. The formation of defects such as stacking faults like 60o twins and consequently 60o grain boundaries is still of major concern for the defect-free epitaxial growth of 2D chalcogenides. Although growth strategies to overcome the occurrence of these defects are currently being considered, more fundamental understanding on the origin of these defects at the initial stages of the growth is highly essential. Therefore this work focuses on the understanding of 60o twin formation in (quasi-)vdW epitaxy of 2D chalcogenides relying on systematic molecular beam epitaxy (MBE) experiments supported by density functional theory (DFT) calculations. The MBE experiments reveal the striking difference in 60o twin formation between WSe2 and Bi2Se3 in both quasi-vdW heteroepitaxy and vdW homoepitaxy, which from our DFT calculations links to the difference in interlayer vdW coupling strength. The stronger interlayer vdW coupling in Bi2Se3 compared to WSe2 results in a striking enhanced control on twin formation and hence shows significantly more promise for defect-free epitaxial integration. This interesting aspect of (quasi-)vdW epitaxy reveals that the strength of interlayer vdW coupling is key for functional 2D materials and opens perspectives for other vdW materials sharing strong interlayer interactions.

[1]  C. Merckling,et al.  Epitaxial registry and crystallinity of MoS2 via molecular beam and metalorganic vapor phase van der Waals epitaxy , 2020 .

[2]  C. Merckling,et al.  On the van der Waals Epitaxy of Homo-/Heterostructures of Transition Metal Dichalcogenides. , 2020, ACS applied materials & interfaces.

[3]  B. Grévin,et al.  New approach for the molecular beam epitaxy growth of scalable WSe2 monolayers , 2020, Nanotechnology.

[4]  C. Merckling,et al.  Fundamental limitation of van der Waals homoepitaxy by stacking fault formation in WSe2 , 2020, 2D Materials.

[5]  C. Huyghebaert,et al.  Importance of the substrate’s surface evolution during the MOVPE growth of 2D-transition metal dichalcogenides , 2019, Nanotechnology.

[6]  C. Merckling,et al.  Peculiar alignment and strain of 2D WSe2 grown by van der Waals epitaxy on reconstructed sapphire surfaces , 2019, Nanotechnology.

[7]  D. Akinwande,et al.  Graphene and two-dimensional materials for silicon technology , 2019, Nature.

[8]  Y. Sakuma,et al.  Effect of Substrate Orientation on MoSe2/GaAs Heteroepitaxy , 2019 .

[9]  Jiwoong Park,et al.  Stacking, strain, and twist in 2D materials quantified by 3D electron diffraction , 2019, Physical Review Materials.

[10]  L. Gu,et al.  Epitaxial Growth of Two-Dimensional Metal-Semiconductor Transition-Metal Dichalcogenide Vertical Stacks (VSe2/MX2) and Their Band Alignments. , 2019, ACS nano.

[11]  S. Okada,et al.  Surface-Mediated Aligned Growth of Monolayer MoS2 and In-Plane Heterostructures with Graphene on Sapphire. , 2018, ACS nano.

[12]  K. Barla,et al.  Layer-controlled epitaxy of 2D semiconductors: bridging nanoscale phenomena to wafer-scale uniformity , 2018, Nanotechnology.

[13]  A. Bostwick,et al.  Multimodal spectromicroscopy of monolayer WS2 enabled by ultra-clean van der Waals epitaxy , 2018, 2D Materials.

[14]  J. Robinson Perspective: 2D for beyond CMOS , 2018 .

[15]  C. Merckling,et al.  MoS2 synthesis by gas source MBE for transition metal dichalcogenides integration on large scale substrates , 2018 .

[16]  M. Tamargo,et al.  Reduced twinning and surface roughness of Bi2Se3 and Bi2Te3 layers grown by molecular beam epitaxy on sapphire substrates , 2018 .

[17]  A. Kis,et al.  Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion , 2018, npj 2D Materials and Applications.

[18]  Christopher M. Smyth,et al.  Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. , 2018, ACS nano.

[19]  Gwo-Ching Wang,et al.  Diffusion-Controlled Epitaxy of Large Area Coalesced WSe2 Monolayers on Sapphire. , 2018, Nano letters.

[20]  T. Michely,et al.  Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study , 2018 .

[21]  C. Hinkle,et al.  van der Waals epitaxy: 2D materials and topological insulators , 2017 .

[22]  Moon J. Kim,et al.  Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides , 2017 .

[23]  C. Shih,et al.  Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions , 2017 .

[24]  S. Roche,et al.  Growth of Twin-Free and Low-Doped Topological Insulators on BaF2(111) , 2017 .

[25]  Zijing Ding,et al.  Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride. , 2017, Journal of the American Chemical Society.

[26]  A. Krasheninnikov,et al.  Engineering the Electronic Properties of Two‐Dimensional Transition Metal Dichalcogenides by Introducing Mirror Twin Boundaries , 2017 .

[27]  M. Batzill,et al.  Metallic Twin Grain Boundaries Embedded in MoSe2 Monolayers Grown by Molecular Beam Epitaxy. , 2017, ACS nano.

[28]  V. Holý,et al.  Twin domain imaging in topological insulator Bi2Te3 and Bi2Se3 epitaxial thin films by scanning X-ray nanobeam microscopy and electron backscatter diffraction , 2017, Journal of applied crystallography.

[29]  Jared M. Johnson,et al.  Molecular beam epitaxy of 2D-layered gallium selenide on GaN substrates , 2016, 1610.06265.

[30]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[31]  Hyun Jae Kim,et al.  Free-electron creation at the 60° twin boundary in Bi2Te3 , 2016, Nature Communications.

[32]  Kyeongjae Cho,et al.  Controlling nucleation of monolayer WSe2 during metal-organic chemical vapor deposition growth , 2016 .

[33]  S. Chae,et al.  Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries , 2016, Nature Communications.

[34]  M. Ge,et al.  Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. , 2015, ACS nano.

[35]  J. Furdyna,et al.  Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene , 2015 .

[36]  J. Robinson,et al.  Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. , 2015, ACS nano.

[37]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[38]  Kenji Watanabe,et al.  Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles. , 2015, Nano letters.

[39]  J. Warner,et al.  All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures. , 2015, ACS nano.

[40]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[41]  Moon J. Kim,et al.  Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. , 2015, ACS nano.

[42]  G. Mussler,et al.  Suppressing Twin Domains in Molecular Beam Epitaxy Grown Bi2Te3 Topological Insulator Thin Films , 2015 .

[43]  Moon J. Kim,et al.  Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. , 2014, Nano letters.

[44]  Kenji Watanabe,et al.  Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. , 2014, ACS nano.

[45]  L. Molenkamp,et al.  Suppressing Twin Formation in Bi2Se3 Thin Films , 2014, 1503.06498.

[46]  Yong-Wei Zhang,et al.  Nanoscale Transition Metal Dichalcogenides: Structures, Properties, and Applications , 2014 .

[47]  B. Kooi,et al.  Surface reconstruction-induced coincidence lattice formation between two-dimensionally bonded materials and a three-dimensionally bonded substrate. , 2014, Nano letters.

[48]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[49]  H. J. Liu,et al.  Single domain Bi2Se3 films grown on InP(111)A by molecular-beam epitaxy , 2013 .

[50]  U. W. Pohl Epitaxy of Semiconductors: Introduction to Physical Principles , 2013 .

[51]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[52]  M. Burghard,et al.  Growth of high-mobility Bi2Te2Se nanoplatelets on hBN sheets by van der Waals epitaxy. , 2012, Nano letters.

[53]  Zhehui Wang,et al.  Growth characteristics of topological insulator Bi2Se3 films on different substrates , 2011 .

[54]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[55]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[56]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[57]  J. R. Arthur,et al.  Molecular beam epitaxy , 1975 .

[58]  A. Koma Van der Waals epitaxy for highly lattice-mismatched systems , 1999 .

[59]  B. Parkinson,et al.  van der Waals epitaxial growth and characterization of MoSe2 thin films on SnS2 , 1990 .

[60]  L. Royer Recherches expérimentales sur l'épitaxie ou orientation mutuelle de cristaux d'espèces différentes , 1928 .