Elemental preference and atomic scale site recognition in a Co-Al-W-base superalloy

[1]  A. J. D’Alfonso,et al.  Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy. , 2016, Ultramicroscopy.

[2]  T. Pollock,et al.  Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys , 2016 .

[3]  K. Amine,et al.  Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes , 2015, Nature Communications.

[4]  S D Findlay,et al.  Modelling the inelastic scattering of fast electrons. , 2015, Ultramicroscopy.

[5]  H. Chang,et al.  Creep behavior in a γ′ strengthened Co–Al–W–Ta–Ti single-crystal alloy at 1000 °C , 2015 .

[6]  S. Pennycook,et al.  Insights into the physical chemistry of materials from advances in HAADF-STEM. , 2015, Physical chemistry chemical physics : PCCP.

[7]  Q. Feng,et al.  Improved High-Temperature Microstructural Stability and Creep Property of Novel Co-Base Single-Crystal Alloys Containing Ta and Ti , 2014 .

[8]  L. Allen,et al.  Quantitative Elemental Mapping at Atomic Resolution Using X-Ray Spectroscopy , 2014 .

[9]  J. Tiley,et al.  Coarsening kinetics of γ′ precipitates in cobalt-base alloys , 2013 .

[10]  J. Saal,et al.  Thermodynamic stability of Co–Al–W L12 γ′ , 2012, 1210.1364.

[11]  Q. Jia,et al.  Atomic-scale chemical quantification of oxide interfaces using energy-dispersive X-ray spectroscopy , 2012 .

[12]  H. Inui,et al.  Creep deformation of single crystals of new Co–Al–W-based alloys with fcc/L12 two-phase microstructures , 2012 .

[13]  Meiling Wang,et al.  Alloying Effects on Heat‐Treated Microstructure in Co‐Al‐W‐Base Superalloys at 1300°C and 900°C , 2012 .

[14]  A. Janotti,et al.  A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al,W) , 2012 .

[15]  N. Sourlas,et al.  Many-body theory, magnetism, spin glasses and related phenomena , 2012 .

[16]  Dmitri O. Klenov,et al.  Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy , 2012 .

[17]  Baode Sun,et al.  Effect of homogenization treatment on microstructure and properties for Cu–Fe–Ag in situ composites , 2011 .

[18]  Dmitri O. Klenov,et al.  Structure of the InAlAs/InP interface by atomically resolved energy dispersive spectroscopy , 2011 .

[19]  H. Adachi,et al.  Plastic deformation of polycrystals of Co3(Al,W) with the L12 structure , 2011 .

[20]  Q. Feng,et al.  Phase Equilibria in Co-Rich Co-Al-W Alloys at 1300°C and 900°C , 2011 .

[21]  T. Takasugi,et al.  Alloying Effects on the Stability of γ/γ′ Microstructure in Co-Al-W Base Alloys , 2011 .

[22]  Chong-yu Wang,et al.  First-principle investigation of 3d transition metal elements in γ′-Co3(Al,W) , 2010 .

[23]  Peter Abbamonte,et al.  Probing Interfacial Electronic Structures in Atomic Layer LaMnO3 and SrTiO3 Superlattices , 2010, Advanced materials.

[24]  Tresa M. Pollock,et al.  New Co-based γ-γ′ high-temperature alloys , 2010 .

[25]  Chong-yu Wang,et al.  First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ′-Co3(Al, W) , 2009 .

[26]  H. Fraser,et al.  Atomic scale structure and chemical composition across order-disorder interfaces. , 2009, Physical review letters.

[27]  Chao Jiang First-principles study of Co3(Al,W) alloys using special quasi-random structures , 2008 .

[28]  T. Pollock,et al.  Flow stress anomalies in γ/γ′ two-phase Co–Al–W-base alloys , 2007 .

[29]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[30]  K. Ishida,et al.  Cobalt-Base High-Temperature Alloys , 2006, Science.

[31]  Albert James Bradley,et al.  An X-Ray Analysis of the Nickel-Aluminium System , 1937 .