Electronic properties for small tin clusters Snn (n ≤ 20) from density functional theory and the convergence toward the solid state

Global minimum structures of neutral tin clusters with up to 20 atoms obtained recently from genetic algorithm simulations within a density‐functional approach (Schäfer et al., J Phys Chem A 2008, 112, 12312) were used to evaluate the corresponding electronic properties. The evolution of these properties with increasing cluster size is discussed in detail and compared with the lighter silicon and germanium clusters. We also discuss the extrapolation of these properties to the bulk limit. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010

[1]  K. Balasubramanian,et al.  GEOMETRIES AND ENERGY SEPARATIONS OF THE ELECTRONIC STATES OF GE5+ AND SN5+ , 1998 .

[2]  S. Bulusu,et al.  Search for global minimum geometries for medium sized germanium clusters: Ge12-Ge20. , 2005, The Journal of chemical physics.

[3]  Serdar Ogut,et al.  First-principles density-functional calculations for optical spectra of clusters and nanocrystals , 2002 .

[4]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[5]  V. Bondybey,et al.  Laser vaporization of tin: Spectra and ground state molecular parameters of Sn2 , 1983 .

[6]  Ju-Guang Han,et al.  A computational investigation of copper-doped germanium and germanium clusters by the density-functional theory. , 2005, The Journal of chemical physics.

[7]  Hunter,et al.  Structural transitions in size-selected germanium cluster ions. , 1994, Physical review letters.

[8]  A. Desideri,et al.  Stability of ligand free tin clusters , 1975 .

[9]  D. Bégué,et al.  Accurate dipole polarizabilities of small silicon clusters from ab initio and density functional theory calculations , 2003 .

[10]  Bicai Pan,et al.  Structures of medium-sized silicon clusters , 1998, Nature.

[11]  Shijie Ma,et al.  Structures of medium size germanium clusters , 2006 .

[12]  R. G. Wheeler,et al.  Photoionization dynamics and abundance patterns in laser vaporized tin and lead clusters , 1987 .

[13]  Yousef Saad,et al.  Vibrational modes of silicon nanostructures , 1995 .

[14]  Thermodynamics of tin clusters , 2002, cond-mat/0211529.

[15]  Tin clusters that do not melt : Calorimetry measurements up to 650 K , 2005 .

[16]  K. Kreher,et al.  Fundamentals of Semiconductors – Physics and Materials Properties , 1997 .

[17]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[18]  J. Chelikowsky,et al.  Melting of small Sn clusters by ab initio molecular dynamics simulations , 2004 .

[19]  K. Balasubramanian,et al.  Electronic structure of group IV tetramers (Si4–Pb4) , 1992 .

[20]  C. Majumder,et al.  Low-energy surface collision induced dissociation of Ge and Sn cluster ions , 2003 .

[21]  Julio C. Facelli,et al.  Modified genetic algorithms to model cluster structures in medium-sized silicon clusters: Si18-Si60 , 2006 .

[22]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[23]  Saunders,et al.  Polarizability of alkali clusters. , 1985, Physical review. B, Condensed matter.

[24]  K. Peterson Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements , 2003 .

[25]  A. Savin,et al.  An ab initio investigation of the molecules X2, CuX, Cu2X and CuX2 (X = Si, Ge, and Sn) , 1995 .

[26]  Peter Schwerdtfeger,et al.  The low lying isomers of the copper nonamer cluster, Cu9 , 2008 .

[27]  George Maroulis,et al.  Computational aspects of electric polarizability calculations: Atoms, molecules and clusters , 2006, J. Comput. Methods Sci. Eng..

[28]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[29]  A. Shvartsburg,et al.  STRUCTURES OF GERMANIUM CLUSTERS : WHERE THE GROWTH PATTERNS OF SILICON AND GERMANIUM CLUSTERS DIVERGE , 1999 .

[30]  Dipole polarizabilities of germanium clusters , 2003 .

[31]  C. Majumder,et al.  Small clusters of tin: Atomic structures, energetics, and fragmentation behavior , 2001 .

[32]  A. Sieck,et al.  Structure and vibrational spectra of low-energy silicon clusters , 1997 .

[33]  P. Schwerdtfeger,et al.  From clusters to the solid state: Global minimum structures for cesium clusters Cs n (n=2-20,∞) and their electronic properties , 2008 .

[34]  Bernd Hartke Global geometry optimization of small silicon clusters at the level of density functional theory , 1998 .

[35]  K. Lee,et al.  Semiempirical tight binding method study of small Ge and Sn clusters , 2000 .

[36]  P. Cao,et al.  Structures of Ge n clusters ( n = 3 – 1 0 ) and comparisons to Si n clusters , 2000 .

[37]  Leiming Wang,et al.  Sn12(2-): stannaspherene. , 2006, Journal of the American Chemical Society.

[38]  Finite-temperature behavior of small silicon and tin clusters: An ab initio molecular dynamics study , 2005, cond-mat/0507075.

[39]  C. Majumder,et al.  Atomic and electronic structures of neutral and cationSnn(n=2–20)clusters: A comparative theoretical study with different exchange-correlation functionals , 2005 .

[40]  T. Frauenheim,et al.  Shape, polarizability, and metallicity in silicon clusters , 2005 .

[41]  Serdar Ogut,et al.  Ab initio Calculations for the Polarizabilities of Small Semiconductor Clusters , 1997 .

[42]  Becker,et al.  Polarizabilities of isolated semiconductor clusters. , 1996, Physical review letters.

[43]  K. Balasubramanian Relativistic calculations of electronic states and potential energy surfaces of Sn3 , 1986 .

[44]  A. Shvartsburg,et al.  Solid clusters above the bulk melting point , 2000, Physical review letters.

[45]  A. Shvartsburg,et al.  TIN CLUSTERS ADOPT PROLATE GEOMETRIES , 1999 .

[46]  K. Pitzer,et al.  Electron structure calculations including CI for ten low lying states of Pb2 and Sn2. Partition function and dissociation energy of Sn2 , 1983 .

[47]  Jinlan Wang,et al.  Structural evolution of anionic silicon clusters SiN (20 , 2006, The journal of physical chemistry. A.

[48]  K. Raghavachari Theoretical study of small silicon clusters: Equilibrium geometries and electronic structures of Sin (n=2–7,10) , 1986 .

[49]  Siu,et al.  Spectroscopic evidence for the tricapped trigonal prism structure of semiconductor clusters , 2000, Physical review letters.

[50]  W. G. Burgers,et al.  Mechanism and kinetics of the allotropic transformation of tin , 1957 .

[51]  Michael Dolg,et al.  Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO , 2000 .

[52]  Kavita Joshi,et al.  Abnormally high melting temperature of the Sn 10 cluster , 2002 .

[53]  C. Majumder,et al.  Fragmentation of small tin cluster ions (Snx+:x=4–20) in the low-energy collisions with a highly oriented pyrolytic graphite surface , 2002 .

[54]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[55]  Guoqiang Lai,et al.  Stable structures of neutral and ionic Gen (n=11–19) clusters , 2005 .

[56]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[57]  A. Shvartsburg,et al.  Ionization of medium-sized silicon clusters and the geometries of the cations , 1998 .

[58]  Xiaolei Zhu,et al.  Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calculations of Si7–Si11 , 2003 .

[59]  Andrés Aguado,et al.  First-principles study of elastic properties and pressure-induced phase transitions of Sn: LDA versus GGA results , 2003 .

[60]  Jinlan Wang,et al.  Structure and electronic properties of Ge n (n=2-25) clusters from density-functional theory , 2001 .

[61]  A. Shvartsburg,et al.  Modeling ionic mobilities by scattering on electronic density isosurfaces: Application to silicon cluster anions , 2000 .

[62]  R. Honig On the Molecular Evaporation of Group IVB Elements , 1953 .

[63]  P. Schwerdtfeger,et al.  Structure and electric properties of Sn(N) clusters (N = 6-20) from combined electric deflection experiments and quantum theoretical studies. , 2008, The journal of physical chemistry. A.

[64]  S. Yoo,et al.  Structures and relative stability of medium-sized silicon clusters. IV. Motif-based low-lying clusters Si21-Si30. , 2006, The Journal of chemical physics.

[65]  Caizhuang Wang,et al.  Structures and dynamical properties of C{sub n}, Si{sub n}, Ge{sub n}, and Sn{sub n} clusters with n up to 13 , 2000 .

[66]  Ionization potentials of small tin clusters: first principles calculations , 2002 .

[67]  P. Dugourd,et al.  Static electric dipole polarizabilities of alkali clusters , 1999 .

[68]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[69]  B. K. Panda,et al.  Orthogonal tight-binding molecular-dynamics simulations of silicon clusters , 2001 .

[70]  K. Balasubramanian,et al.  Geometries and Energy Separations of 24 Electronic States of Sn5 , 1996 .

[71]  S. Yoshida,et al.  Photoionization studies of germanium and tin clusters in the energy region of 5.0–8.8 eV: Ionization potentials for Gen(n=2–57) and Snn(n=2–41) , 1999 .

[72]  P. Schwerdtfeger,et al.  Relativistic and electron correlation effects in static dipole polarizabilities for the group-14 elements from carbon to element Z = 114 : Theory and experiment , 2008 .

[73]  Vijay Kumar,et al.  Metal-encapsulated fullerenelike and cubic caged clusters of silicon. , 2001, Physical review letters.

[74]  R. Schäfer,et al.  Dielectric response of germanium clusters , 2008 .

[75]  Keith Bonin,et al.  Electric-Dipole Polarizabilities Of Atoms, Molecules, And Clusters , 1997 .

[76]  Julio C. Facelli,et al.  Modified genetic algorithms to model cluster structures in medium-size silicon clusters , 2004 .

[77]  M. Gausa,et al.  Photoemission from tin and lead cluster anions , 1989 .