Adaptive estimation of the transition density of a particular hidden Markov chain

We study the following model of hidden Markov chain: Y"i=X"i+@?"i,i=1,...,n+1 with (X"i) a real-valued positive recurrent and stationary Markov chain, and (@?"i)"1"=<"i"=<"n"+"1 a noise independent of the sequence (X"i) having a known distribution. We present an adaptive estimator of the transition density based on the quotient of a deconvolution estimator of the density of X"i and an estimator of the density of (X"i,X"i"+"1). These estimators are obtained by contrast minimization and model selection. We evaluate the L^2 risk and its rate of convergence for ordinary smooth and supersmooth noise with regard to ordinary smooth and supersmooth chains. Some examples are also detailed.

[1]  Jens Ledet Jensen,et al.  Asymptotic normality of the maximum likelihood estimator in state space models , 1999 .

[2]  L. Zhao,et al.  Nonparametric Density Estimation in Hidden Markov Models , 2002 .

[3]  Eric Moulines,et al.  Inference in Hidden Markov Models (Springer Series in Statistics) , 2005 .

[4]  Valentine Genon-Catalot,et al.  Computable infinite-dimensional filters with applications to discretized diffusion processes , 2005 .

[5]  Marie-Luce Taupin,et al.  Penalized contrast estimator for adaptive density deconvolution , 2006, math/0601091.

[6]  G. Viennet,et al.  Lp adaptive density estimation in a β mixing framework , 1998 .

[7]  E. Rio,et al.  Concentration around the mean for maxima of empirical processes , 2005, math/0506594.

[8]  P. Spreij,et al.  Nonparametric volatility density estimation for discrete time models , 2002, math/0206142.

[9]  C. LareÂdo,et al.  Stochastic volatility models as hidden Markov models and statistical applications , 2000 .

[10]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[11]  Leonard A. Stefanski,et al.  Rates of convergence of some estimators in a class of deconvolution problems , 1990 .

[12]  Statistique de chaînes de Markov cachées à espace d'états fini. Le cas non stationnaire , 1997 .

[13]  B. Leroux Maximum-likelihood estimation for hidden Markov models , 1992 .

[14]  C. Butucea Deconvolution of supersmooth densities with smooth noise , 2004 .

[15]  Catherine Matias,et al.  SEMIPARAMETRIC DECONVOLUTION WITH UNKNOWN NOISE VARIANCE , 2002 .

[16]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[17]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[18]  B. Vidakovic,et al.  Adaptive wavelet estimator for nonparametric density deconvolution , 1999 .

[19]  P. Massart,et al.  Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .

[20]  Cristina Butucea,et al.  Sharp optimality for density deconvolution with dominating bias , 2004 .

[21]  R. Douc,et al.  Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime , 2004, math/0503681.

[22]  Cristina Butucea,et al.  Sharp Optimality in Density Deconvolution with Dominating Bias. II , 2008 .

[23]  F. Comte,et al.  Adaptive density deconvolution with dependent inputs , 2006, math/0606166.

[24]  Catherine Matias,et al.  Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model , 2005 .

[25]  E. Masry Strong consistency and rates for deconvolution of multivariate densities of stationary processes , 1993 .

[26]  G. Viennet Inequalities for absolutely regular sequences: application to density estimation , 1997 .

[27]  P. Bickel,et al.  Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models , 1998 .

[28]  C. Lacour Rates of convergence for nonparametric deconvolution , 2006, math/0611692.

[29]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[30]  O. Lepski,et al.  Adaptive non-parametric estimation of smooth multivariate functions , 1999 .

[31]  W. W. Daniel Applied Nonparametric Statistics , 1979 .