Problem reduction, renormalization, and memory

Methods for the reduction of the complexity of computational problems are presented, as well as their connections to renormalization, scaling, and irreversible statistical mechanics. Several statistically stationary cases are analyzed; for time dependent problems averaging usually fails, and averaged equations must be augmented by appropriate memory and random forcing terms. Approximations are described and examples are given.

[1]  C. Stephens Renormalization Group Theory , 2006 .

[2]  Alexandre J. Chorin,et al.  Prediction from Partial Data, Renormalization, and Averaging , 2006, J. Sci. Comput..

[3]  A. Chorin,et al.  Stochastic Tools in Mathematics and Science , 2005 .

[4]  Panagiotis Stinis A comparative study of two stochastic mode reduction methods , 2005, math/0509028.

[5]  J. Barber,et al.  Application of Optimal Prediction to Molecular Dynamics , 2004 .

[6]  Panagiotis Stinis A maximum likelihood algorithm for the estimation and renormalization of exponential densities , 2004, math/0409230.

[7]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[8]  Benjamin Seibold,et al.  Optimal Prediction in Molecular Dynamics , 2004, Monte Carlo Methods Appl..

[9]  C. W. Gear,et al.  From molecular dynamics to coarse self-similar solutions: a simple example using equation-free computation , 2003, physics/0312142.

[10]  Alexandre J Chorin,et al.  Averaging and renormalization for the Korteveg–deVries–Burgers equation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Panagiotis Stinis Stochastic Optimal Prediction for the Kuramoto-Sivashinsky Equation , 2003, Multiscale Model. Simul..

[12]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[13]  A. Chorin Conditional Expectations and Renormalization , 2002, Multiscale Model. Simul..

[14]  Jeremy Schofield,et al.  Mode-coupling theory for multiple-point and multiple-time correlation functions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Andrew J. Majda,et al.  A mathematical framework for stochastic climate models , 2001 .

[16]  H. Kantz,et al.  Stochastic modelling: replacing fast degrees of freedom by noise , 2001 .

[17]  Alexandre J. Chorin,et al.  Non-Markovian Optimal Prediction , 2001, Monte Carlo Methods Appl..

[18]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Paul C. Martin Statistical Physics: Statics, Dynamics and Renormalization , 2000 .

[20]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Chorin,et al.  Optimal Prediction for Hamiltonian Partial Differential Equations , 1999, math/9911090.

[22]  R. Moser,et al.  Optimal LES formulations for isotropic turbulence , 1999, Journal of Fluid Mechanics.

[23]  H. Stanley,et al.  Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena , 1999 .

[24]  A J Chorin,et al.  Optimal prediction of underresolved dynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Fisher Conceptual foundations of quantum field theory: Renormalization group theory: its basis and formulation in statistical physics , 1998 .

[26]  G. I. Barenblatt,et al.  On the structure of wave fronts in nonlinear dissipative media , 1985 .

[27]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[28]  R. Swendsen Monte Carlo renormalization group , 1979 .

[29]  Sture Nordholm,et al.  A systematic derivation of exact generalized Brownian motion theory , 1975 .

[30]  Pierre Resibois,et al.  Time dependent correlation functions and mode-mode coupling theories , 1975 .

[31]  G. Jona-Lasinio The renormalization group: A probabilistic view , 1975 .

[32]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[33]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[34]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[35]  E. Caianiello,et al.  THE RENORMALIZATION GROUP , 1962 .

[36]  R. Kupferman Fractional Kinetics in Kac–Zwanzig Heat Bath Models , 2004 .

[37]  H. Hees,et al.  Statistical Physics , 2004 .

[38]  D. Ron,et al.  Renormalization Multigrid (RMG): Statistically Optimal Renormalization Group Flow and Coarse-to-Fine Monte Carlo Acceleration , 2001 .

[39]  Eugen Fick,et al.  The quantum statistics of dynamic processes , 1990 .

[40]  J. Bona,et al.  Travelling-wave solutions to the Korteweg-de Vries-Burgers equation , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[41]  C. Castro,et al.  On the Equivalence of Different Renormalization Groups , 1977 .

[42]  M. Synek,et al.  ACCURATE ANALYTICAL SELF-CONSISTENT-FIELD WAVE FUNCTIONS FOR Nd$sup 3$ . , 1970 .

[43]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .

[44]  L. Landau,et al.  statistical-physics-part-1 , 1958 .