Origin of the trochophora larva

The trochophora larva, which is so well known from the marine plankton, is central to our understanding of the evolution of a large branch of the bilaterians. Two theories for this larval type have been prevalent, the trochaea theory and the theory proposed by Ivanova-Kazas. The embryology, or more precisely the cell-lineage, of these larvae seems to be central for our understanding of their origin, but important details have been missing. According to the trochaea theory, a circumblastoporal ring of blastomeres differentiates to follow the convoluted shape of the conspicuous ciliary bands of the larvae, with prototroch and metatroch around the mouth, forming a filtering system, and telotroch around the anus. According to the Ivanova-Kazas theory, the blastomeres with the ciliary bands develop through specialization of rings of cells of the general ciliation in a lecithotrophic larva. Now, a new cell-lineage study of the gastropod Crepidula has shown that the ring of cells at the edge of the blastopore develops into the band of cells carrying prototroch and metatroch, characteristic of the trochophora. This gives strong support to the trochaea theory.

[1]  G. von Dassow,et al.  The trochoblasts in the pilidium larva break an ancient spiralian constraint to enable continuous larval growth and maximally indirect development , 2017, EvoDevo.

[2]  C. Nielsen Evolution of deuterostomy – and origin of the chordates , 2017, Biological reviews of the Cambridge Philosophical Society.

[3]  J. Henry,et al.  Spiralian gastrulation: germ layer formation, morphogenesis, and fate of the blastopore in the slipper snail Crepidula fornicata , 2015, EvoDevo.

[4]  Xin Yi Chan,et al.  Development of blastomere clones in the Ilyanassa embryo: transformation of the spiralian blastula into the larval body plan , 2014, Development Genes and Evolution.

[5]  C. Arenas-Mena,et al.  Development of a feeding trochophore in the polychaete Hydroides elegans. , 2014, The International journal of developmental biology.

[6]  Raju Tomer,et al.  Larval body patterning and apical organs are conserved in animal evolution , 2014, BMC Biology.

[7]  C. Nielsen Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? , 2013, BMC Evolutionary Biology.

[8]  L. Nagy,et al.  Analysis of ciliary band formation in the mollusc Ilyanassa obsoleta , 2013, Development Genes and Evolution.

[9]  G. von Dassow,et al.  A non-feeding pilidium with apparent prototroch and telotroch. , 2012, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[10]  C. Nielsen How to make a protostome , 2012, Invertebrate Systematics.

[11]  S. Harzsch,et al.  Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary , 2010, Frontiers in Zoology.

[12]  M. Martindale,et al.  A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta , 2010, EvoDevo.

[13]  C. Arenas-Mena Indirect development, transdifferentiation and the macroregulatory evolution of metazoans , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  M. Martindale,et al.  Homology of ciliary bands in Spiralian Trochophores. , 2007, Integrative and comparative biology.

[15]  A. Minelli Animal Evolution: Interrelationships of the Living Phyla , 2007 .

[16]  M. Martindale,et al.  High-resolution fate map of the snail Crepidula fornicata: the origins of ciliary bands, nervous system, and muscular elements. , 2007, Developmental biology.

[17]  C. Arenas-Mena,et al.  Ciliary band gene expression patterns in the embryo and trochophore larva of an indirectly developing polychaete. , 2007, Gene expression patterns : GEP.

[18]  C. Ackermann,et al.  Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta) , 2005, Journal of morphology.

[19]  C. Nielsen Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. , 2005, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[20]  R. Woltereck Beiträge zur praktischen Analyse der Polygordius-Entwicklung nach dem »Nordsee-« und dem »Mittelmeertypus« , 1904, Archiv für Entwicklungsmechanik der Organismen.

[21]  M. Martindale,et al.  Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea) , 2004, Evolution & development.

[22]  C. Nielsen Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[23]  R. Raff,et al.  Who came first--larvae or adults? origins of bilaterian metazoan larvae. , 2003, The International journal of developmental biology.

[24]  P. S. Larsen,et al.  Downstream collecting in ciliary suspension feeders: the catch-up principle , 2000 .

[25]  G. Rouse Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa , 1999 .

[26]  M. Martindale,et al.  The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians. , 1998, Developmental biology.

[27]  M. Martindale,et al.  Conservation of the spiralian developmental program: cell lineage of the nemertean, Cerebratulus lacteus. , 1998, Developmental biology.

[28]  W. Damen,et al.  Cell-specific gene regulation in early molluscan development , 1997 .

[29]  C. Nielsen Animal Evolution: Interrelationships of the Living Phyla , 1995 .

[30]  W. Dictus,et al.  Cell lineage of the prototroch of Patella vulgata (Gastropoda, Mollusca). , 1994, Developmental biology.

[31]  R. Emlet Functional Constraints on the Evolution of Larval Forms of Marine Invertebrates: Experimental and Comparative Evidence , 1991 .

[32]  C. Nielsen Structure and Function of Metazoan Ciliary Bands and Their Phylogenetic Significance , 1987 .

[33]  C. Nielsen Larval ciliary bands and metazoan phylogeny , 1979 .

[34]  J. Hedgpeth EVOLUTION OF THE METAZOAN LIFE CYCLE , 1974 .

[35]  T. Jahn,et al.  SUSPENSION FEEDING BY MARINE INVERTEBRATE LARVAE: CLEARANCE OF PARTICLES BY CILIATED BANDS OF A ROTIFER, PLUTEUS, AND TROCHOPHORE , 1972 .

[36]  D. Anderson The Embryology of the Polychaete Scoloplos armiger , 1959 .

[37]  L. Hyman,et al.  The Invertebrates: Platyhelminthes And Rhynchocoela:The Acoelomate Bilateria (Volume-2) , 1951 .

[38]  L. Hyman Invertebrate Zoology. (Book Reviews: The Invertebrates: Platyhelminthes and Rhynchocoela. The Acoelomate Bilateria) , 1951 .