Cosmic-ray exposure ages of four acapulcoites and two differentiated achondrites and evidence for a two-layer structure of the acapulcoite/lodranite parent asteroid
暂无分享,去创建一个
[1] M. Zolensky,et al. The Meteoritical Bulletin, No. 88, 2004 July , 2004 .
[2] W. Boynton,et al. Evolution and classification of acapulcoites and lodranites from a chemical point of view , 2004 .
[3] L. Schultz,et al. New noble gas data of primitive and differentiated achondrites including Northwest Africa 011 and Tafassasset , 2003 .
[4] T. Mccoy,et al. The Meteoritical Bulletin, No. 87, 2003 July , 2003 .
[5] K. Farley,et al. Single grain (U-Th)/He ages from phosphates in Acapulco meteorite and implications for thermal history , 2003 .
[6] M. Trieloff,et al. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.
[7] R. Clayton. Oxygen Isotopes in the Solar System , 2003 .
[8] K. Nishiizumi,et al. Noble gases and cosmogenic radionuclides in the Gold Basin L4 chondrite shower: Thermal history, exposure history, and pre‐atmospheric size , 2003 .
[9] O. Eugster,et al. The trapped noble gas component in achondrites , 2002 .
[10] J. Zipfel,et al. The Meteoritical Bulletin, No. 86, 2002 July , 2002 .
[11] K. Keil,et al. Meteoritic parent bodies: Their number and identification , 2002 .
[12] J. Zipfel,et al. The Meteoritical Bulletin, No. 85, 2001 September , 2001 .
[13] L. Nittler,et al. Anatomy of a Partially Differentiated Asteroid: A “NEAR”-Sighted View of Acapulcoites and Lodranites , 2000 .
[14] C. Schnabel,et al. Evidence for common breakup events of the acapulcoites‐lodranites and chondrites , 2000 .
[15] C. Floss. Complexities on the acapulcoite‐lodranite parent body: Evidence from trace element distributions in silicate minerals , 2000 .
[16] J. Grossman. The Meteoritical Bulletin, No. 84, 2000 August , 2000 .
[17] R. Pepin. On the Isotopic Composition of Primordial Xenon in Terrestrial Planet Atmospheres , 2000 .
[18] P. Renne. 40Ar/39Ar age of plagioclase from Acapulco meteorite and the problem of systematic errors in cosmochronology , 2000 .
[19] O. Pravdivtseva,et al. VERIFICATION AND INTERPRETATION OF THE I-XE CHRONOMETER , 1999 .
[20] C. Floss. Complexities on the Acapulcoite- Lodranite Parent Body , 1998 .
[21] V. Alexeev. Parent bodies of L and H chondrites: Times of catastrophic events , 1998 .
[22] L. Taylor,et al. Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large‐scale differentiation , 1997 .
[23] L. Schultz,et al. Cosmic‐ray exposure ages of diogenites and the recent collisional history of the howardite, eucrite and diogenite parent body/bodies , 1997 .
[24] E. Jessberger,et al. The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers , 1997 .
[25] R. Clayton,et al. A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors , 1997 .
[26] K. Keil,et al. PARTIAL MELTING AND MELT MIGRATION IN THE ACAPULCOITE-LODRANITE PARENT BODY , 1997 .
[27] R. Clayton,et al. A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting , 1996 .
[28] M. Lindstrom,et al. Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin , 1996 .
[29] K. Marti,et al. Collisional history of H chondrites , 1995 .
[30] J. Zipfel,et al. Chemical composition and origin of the Acapulco meteorite , 1995 .
[31] K. Marti,et al. I-Xe studies of the Acapulco meteorite: Absolute I-Xe ages of individual phosphate grains and the Bjurböle standard , 1994 .
[32] Richard P. Binzel,et al. Asteroid spectroscopy: Progress and perspectives , 1993 .
[33] Noriko,et al. Compositions of REE, K, Rb, Sr, Ba, Mg, Ca, Fe, and Sr isotopes in Antarctic"unique" meteorites , 1993 .
[34] Nobuo,et al. Noble gases in the unique meteorites Yamato-74063 and -74357 , 1993 .
[35] O. Eugster,et al. The record of cosmogenic, radiogenic, fissiogenic, and trapped noble gases in recently recovered Chinese and other chondrites , 1993 .
[36] B. Lavielle,et al. Trapped xenon in ordinary chondrites , 1992 .
[37] R. Wieler,et al. Characterisation of Q-gases and other noble gas components in the Murchison meteorite , 1992 .
[38] G. Manhès,et al. U-Pb Study of the Acapulco Meteorite , 1992 .
[39] G. Wasserburg,et al. Samarium-neodymium evolution of meteorites , 1992 .
[40] Y. Yoshida,et al. Noble gas composition in unique meteorite Yamato-74063 , 1991 .
[41] F. Wlotzka. The Meteoritical Bulletin , 1990 .
[42] O. Eugster. Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages , 1988 .
[43] E. Anders,et al. Isotopic anomalies of Ne, Xe, and C in meteorites. II - Interstellar diamond and SiC: Carriers of exotic noble gases. III - Local and exotic noble gas components and their interrelations , 1988 .
[44] H. Wänke,et al. Allan Hills 77081—an unusual stony meteorite , 1982 .
[45] J. Crabb. Noble Gases in the E-Chondrites , 1981 .
[46] H. Wänke,et al. The Acapulco meteorite: Chemistry, mineralogy and irradiation effects , 1981 .
[47] K. Marti. Trapped xenon and the classification of chondrites , 1967 .
[48] R. Wieler,et al. Noble Gases : In Geochemistry and Cosmochemistry , 2002 .
[49] R. Wieler. Cosmic-Ray-Produced Noble Gases in Meteorites , 2002 .
[50] R. Wieler,et al. Noble Gases in the Solar System , 2002 .
[51] A. Weigel,et al. Relationships among lodranites and acapulcoites: noble gas isotopic abundances, chemical composition, cosmic-ray exposure ages, and solar cosmic ray effects† , 1999 .
[52] J. Grossman. The Meteoritical Bulletin, No. 81 , 1997 .
[53] F. Begemann,et al. Cosmogenic and fissiogenic noble gases and 81Kr-Kr exposure age clusters of eucrites , 1996 .
[54] O. Eugster,et al. Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites , 1995 .
[55] J. Zähringer. Rare gases in stony meteorites , 1968 .