Issues with positivity-preserving Patankar-type schemes

Patankar-type schemes are linearly implicit time integration methods designed to be unconditionally positivity-preserving by going outside of the class of general linear methods. Thus, classical stability concepts cannot be applied and there is no satisfying stability or robustness theory for these schemes. We develop a new approach to study a few related issues that impact some Patankar-type methods. In particular, we demonstrate problematic behaviors of these methods that can lead to undesired oscillations or order reduction on very simple linear problems. Extreme cases of the latter manifest as spurious steady states. We investigate various classes of Patankartype schemes based on classical Runge-Kutta methods, strong stability preserving Runge-Kutta methods, and deferred correction schemes using our approach. Finally, we strengthen our analysis with challenging applications including stiff nonlinear problems.

[1]  Tong Wu,et al.  Steady State and Sign Preserving Semi-Implicit Runge-Kutta Methods for ODEs with Stiff Damping Term , 2015, SIAM J. Numer. Anal..

[2]  Andreas Meister,et al.  A positivity preserving and well-balanced DG scheme using finite volume subcells in almost dry regions , 2016, Appl. Math. Comput..

[3]  Z. Horváth,et al.  Positivity of Runge-Kutta and diagonally split Runge-Kutta methods , 1998 .

[4]  Chi-Wang Shu,et al.  Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations , 2017 .

[5]  Hendrik Ranocha,et al.  Positivity-Preserving Adaptive Runge-Kutta Methods , 2021, Communications in Applied Mathematics and Computational Science.

[6]  Zheng Sun,et al.  Strong Stability of Explicit Runge-Kutta Time Discretizations , 2018, SIAM J. Numer. Anal..

[7]  Karol Mikula,et al.  Inflow-implicit/outflow-explicit finite volume methods for solving advection equations , 2014 .

[8]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[9]  Dmitri Kuzmin,et al.  Entropy stabilization and property-preserving limiters for ℙ1 discontinuous Galerkin discretizations of scalar hyperbolic problems , 2020, J. Num. Math..

[10]  S. Kopecz,et al.  On Order Conditions for modified Patankar-Runge-Kutta schemes , 2017, 1702.04589.

[11]  Francesca Mazzia,et al.  Test Set for Initial Value Problem Solvers , 2003 .

[12]  Philipp Öffner,et al.  An Arbitrary High Order and Positivity Preserving Method for the Shallow Water Equations , 2021, ArXiv.

[13]  Chi-Wang Shu,et al.  A Third-Order Unconditionally Positivity-Preserving Scheme for Production–Destruction Equations with Applications to Non-equilibrium Flows , 2018, J. Sci. Comput..

[14]  Hendrik Ranocha,et al.  On strong stability of explicit Runge–Kutta methods for nonlinear semibounded operators , 2018, IMA Journal of Numerical Analysis.

[15]  Eric Deleersnijder,et al.  A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations , 2003 .

[16]  A. Bellen,et al.  Unconditional Contractivity in the Maximum Norm of Diagonally Split Runge--Kutta Methods , 1997 .

[17]  Qing Nie,et al.  DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia , 2017, Journal of Open Research Software.

[18]  C. Bolley,et al.  Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques , 1978 .

[19]  David I. Ketcheson,et al.  Positivity for Convective Semi-discretizations , 2016, J. Sci. Comput..

[20]  Philipp Offner,et al.  Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes , 2019, Applied Numerical Mathematics.

[21]  Karol Mikula,et al.  Inflow-Implicit/Outflow-Explicit Scheme for Solving Advection Equations , 2011 .

[22]  K. J. in 't Hout A note on unconditional maximum norm contractivity of diagonally split Runge-Kutta methods , 1996 .

[23]  A comparison of numerical methods for conservative and positive advection‐diffusion‐production‐destruction systems , 2019, PAMM.

[24]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[25]  E. Hairer,et al.  Stiff differential equations solved by Radau methods , 1999 .

[26]  Philipp Öffner,et al.  L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Stability of Explicit Runge–Kutta Schemes , 2017, Journal of Scientific Computing.

[27]  Andreas Meister,et al.  On the existence of three-stage third-order modified Patankar–Runge–Kutta schemes , 2019, Numerical Algorithms.

[28]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[29]  Colin B. Macdonald,et al.  A Numerical Study of Diagonally Split Runge–Kutta Methods for PDEs with Discontinuities , 2008, J. Sci. Comput..

[30]  Andreas Meister,et al.  Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production–destruction systems , 2017, 1703.05052.

[31]  D. Ketcheson,et al.  Energy Stability of Explicit Runge-Kutta Methods for Non-autonomous or Nonlinear Problems , 2019, SIAM J. Numer. Anal..

[32]  P. Frolkovic Semi-implicit methods based on inflow implicit and outflow explicit time discretization of advection , 2016 .