Constrained Clustering with Local Constraint Propagation

We consider the problem of multi-class constrained clustering given pairwise constraints, which specify the pairs of data belonging to the same or different clusters. In this paper, we present a new constrained clustering algorithm, Local Constraint Propagation (LCP), which can propagate the influence of each pairwise constraint to the unconstrained data with sufficient smoothness. It not only reveals the underlying structures of the clusters, but also integrates the influence of all the pairwise constraints on every data point. Promising experiments on image segmentations demonstrate the effectiveness of our method.

[1]  Johan A. K. Suykens,et al.  Learning from General Label Constraints , 2004, SSPR/SPR.

[2]  Ian Davidson,et al.  Constrained Clustering: Advances in Algorithms, Theory, and Applications , 2008 .

[3]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[4]  Peng Liu,et al.  Semi-supervised sparse metric learning using alternating linearization optimization , 2010, KDD.

[5]  Dan Klein,et al.  From Instance-level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering , 2002, ICML.

[6]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Dan Klein,et al.  Spectral Learning , 2003, IJCAI.

[8]  Tomer Hertz,et al.  Computing Gaussian Mixture Models with EM Using Equivalence Constraints , 2003, NIPS.

[9]  Jianbo Shi,et al.  Segmentation given partial grouping constraints , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Inderjit S. Dhillon,et al.  Semi-supervised graph clustering: a kernel approach , 2005, ICML '05.

[11]  Zhenguo Li,et al.  Constrained clustering via spectral regularization , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Inderjit S. Dhillon,et al.  Information-theoretic metric learning , 2006, ICML '07.

[13]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[14]  Edwin R. Hancock,et al.  Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop, SSPR&SPR 2010, Cesme, Izmir, Turkey, August 18-20, 2010. Proceedings , 2010, SSPR/SPR.

[15]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Raymond J. Mooney,et al.  Integrating constraints and metric learning in semi-supervised clustering , 2004, ICML.

[17]  Miguel Á. Carreira-Perpiñán,et al.  Constrained spectral clustering through affinity propagation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[19]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.