A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm.

A stable, continuous wave, single frequency fiber amplifier system at 1015 nm with 10 W output power is presented. It is based on a large mode double clad fiber cooled to liquid nitrogen temperature. The amplified light is frequency quadrupled to 254 nm and used for spectroscopy of the 6¹S → 6³P transition in mercury.

[1]  F. Schmidt-Kaler,et al.  Rydberg excitation of trapped cold ions: a detailed case study , 2011, 1104.3102.

[2]  T. Hänsch,et al.  Continuous-wave Lyman-alpha generation with solid-state lasers. , 2009, Optics express.

[3]  S. Bize,et al.  Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition. , 2011, Physical review letters.

[4]  T. Hänsch,et al.  750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury. , 2007, Optics letters.

[5]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids to cryogenic temperatures , 2010 .

[6]  T. Walther,et al.  Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8 nm. , 2006, Applied optics.

[7]  M. Romalis,et al.  Measurement of the scalar Stark shift of the 6 1 S 0 -->6 3 P 1 transition in Hg , 2000 .

[8]  J. Walz,et al.  A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm , 2012, 1206.5152.

[9]  Sune Svanberg,et al.  Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm , 2000 .

[10]  M C George,et al.  Trapped Antihydrogen in Its Ground State , 2012 .

[11]  T. Walther,et al.  Magneto-optical trapping of neutral mercury , 2011 .

[12]  D N Payne,et al.  Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. , 2005, Optics letters.

[13]  T. C. Newell,et al.  Temperature effects on the emission properties of Yb-doped optical fibers , 2007 .

[14]  Y. Jeong,et al.  Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. , 2004, Optics express.

[15]  D. Hanna,et al.  Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 /spl mu/m region , 1995 .

[16]  J. Broeng,et al.  High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm. , 2009, Optics express.

[17]  J. Walz,et al.  Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen , 2010, 1009.5480.

[18]  W. G. Schweitzer Hyperfine Structure and Isotope Shifts in the 2537-Å Line of Mercury by a New Interferometric Method , 1963 .

[19]  D. Kracht,et al.  Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power. , 2007, Optics letters.

[20]  L. Goldberg,et al.  Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode. , 1999, Optics letters.

[21]  J. Walz,et al.  Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation. , 2012, Physical review letters.

[22]  M. Zadnik,et al.  REVISED ISOTOPIC COMPOSITION OF TERRESTRIAL MERCURY , 1989 .

[23]  D. Hanna,et al.  Ytterbium-doped fiber amplifiers , 1997 .

[24]  T. R. Gosnell Laser cooling of a solid by 65 K starting from room temperature , 1998 .