The Kinematics of the Young Stellar Population in the W5 Region of the Cassiopeia OB6 Association: Implication for the Formation Process of Stellar Associations

The star-forming region W5 is a major part of the Cassiopeia OB6 association. Its internal structure and kinematics may provide hints of the star formation process in this region. Here, we present a kinematic study of young stars in W5 using the Gaia data and our radial velocity data. A total 490 out of 2000 young stars are confirmed as members. Their spatial distribution shows that W5 is highly substructured. We identify a total of eight groups using the k-means clustering algorithm. There are three dense groups in the cavities of H ii bubbles, and the other five sparse groups are distributed at the edges of the bubbles. The three dense groups have almost the same age (5 Myr) and show a pattern of expansion. The scale of their expansion is not large enough to account for the overall structure of W5. The three northern groups are, in fact, 3 Myr younger than the dense groups, which indicates independent star formation events. Only one of these groups shows the signature of feedback-driven star formation as its members move away from the eastern dense group. The other two groups might have formed in a spontaneous way. On the other hand, the properties of two southern groups are not understood as those of a coeval population. Their origins can be explained by dynamical ejection of stars and multiple star formation. Our results suggest that the substructures in W5 formed through multiple star-forming events in a giant molecular cloud.

[1]  Byeong-Gon Park,et al.  A Gaia View on the Star Formation in the Monoceros OB1 and R1 Associations , 2022, The Astronomical Journal.

[2]  M. Weiler,et al.  Escape from the Bermuda cluster: Orphanization by multiple stellar ejections , 2021, Astronomy & Astrophysics.

[3]  Byeong-Gon Park,et al.  A Kinematic Perspective on the Formation Process of the Stellar Groups in the Rosette Nebula , 2021, The Astronomical Journal.

[4]  Jeong-Eun Lee,et al.  Planck Cold Clumps in the λ Orionis Complex. III. A Chemical Probe of Stellar Feedback on Cores in the λ Orionis Cloud , 2021, The Astrophysical Journal Supplement Series.

[5]  E. Gerlach,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[6]  P. J. Richards,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[7]  N. Wright OB Associations and their origins , 2020, New Astronomy Reviews.

[8]  Byeong-Gon Park,et al.  The Origin of a Distributed Stellar Population in the Star-forming Region W4 , 2020, The Astrophysical Journal.

[9]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[10]  H. Rix,et al.  Not all stars form in clusters – Gaia-DR2 uncovers the origin of OB associations , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  E. Gosset,et al.  A Gaia view of the two OB associations Cygnus OB2 and Carina OB1: the signature of their formation process , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[13]  E. Feigelson,et al.  Kinematics in Young Star Clusters and Associations with Gaia DR2 , 2018, The Astrophysical Journal.

[14]  D. Gouliermis Unbound Young Stellar Systems: Star Formation on the Loose , 2018, Publications of the Astronomical Society of the Pacific.

[15]  L. V. Tóth,et al.  Planck Cold Clumps in the λ Orionis Complex. II. Environmental Effects on Core Formation , 2018, The Astrophysical Journal Supplement Series.

[16]  M. Bessell,et al.  Kinematic evidence for feedback-driven star formation in NGC 1893 , 2018, 1803.05978.

[17]  M. Giersz,et al.  The dynamical origin of multiple populations in intermediate-age clusters in the Magellanic Clouds , 2017, 1707.09153.

[18]  P. Kroupa,et al.  Dynamical ejections of massive stars from young star clusters under diverse initial conditions , 2016, 1604.00006.

[19]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[20]  T. Haworth,et al.  The dangers of being trigger-happy , 2015, 1502.05865.

[21]  P. Kroupa,et al.  The formation of NGC 3603 young starburst cluster: "prompt" hierarchical assembly or monolithic starburst? , 2014, 1412.1473.

[22]  M. Bessell,et al.  Sejong Open Cluster Survey (SOS) – III. The young open cluster NGC 1893 in the H ii region W8 , 2014, 1406.3090.

[23]  Patrick S. Broos,et al.  The Massive Star-forming Regions Omnibus X-ray Catalog, Third Installment , 2014, The Astrophysical Journal Supplement Series.

[24]  M. Bessell,et al.  Sejong Open Cluster Survey (SOS) - II. IC 1848 cluster in the H II region W5 West , 2013, 1311.6553.

[25]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[26]  B. Ercolano,et al.  Ionization-induced star formation – V. Triggering in partially unbound clusters , 2013, 1302.1342.

[27]  B. Ercolano,et al.  Ionization-induced star formation - IV. Triggering in bound clusters , 2012, 1208.4486.

[28]  J. Kruijssen,et al.  On the fraction of star formation occurring in bound stellar clusters , 2012, 1208.2963.

[29]  F. Favata,et al.  Star formation in the outer Galaxy: coronal properties of NGC 1893 , 2011, 1112.0482.

[30]  Harland W. Epps,et al.  Hectochelle: A Multiobject Optical Echelle Spectrograph for the MMT , 2011 .

[31]  Keivan G. Stassun,et al.  AN INTRODUCTION TO THE CHANDRA CARINA COMPLEX PROJECT , 2011, 1102.4779.

[32]  I. Bonnell,et al.  The efficiency of star formation in clustered and distributed regions , 2010, 1009.1152.

[33]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[34]  X. Koenig,et al.  Dusty Cometary Globules in W5 , 2008, 0809.1993.

[35]  X. Koenig,et al.  Clustered and Triggered Star Formation in W5: Observations with Spitzer , 2008, 0808.3284.

[36]  A. Zavagno,et al.  Triggered star formation on the borders of the Galactic HII region RCW 120 , 2007, 0707.1185.

[37]  S. Sciortino,et al.  ACIS-I observations of NGC 2264. Membership and X-ray properties of PMS stars , 2006, astro-ph/0604243.

[38]  M. McSwain,et al.  Binary and Multiple O-Type Stars in the Cassiopeia OB6 Association , 2005, astro-ph/0512407.

[39]  M. Tsujimoto,et al.  Chandra Orion Ultradeep Project: Observations and Source Lists , 2004, astro-ph/0410136.

[40]  L. Hartmann,et al.  Low-Mass Stars and Accretion at the Ages of Planet Formation in the Cepheus OB2 Region , 2004 .

[41]  J. Karr,et al.  Triggered Star Formation in the W5 H II Region , 2003 .

[42]  B. C. Reed,et al.  Catalog of Galactic OB Stars , 2003 .

[43]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[44]  K. Sugitani,et al.  Linear Sequences of Starless Cores and Young Stellar Objects in the Eagle Nebula , 2002 .

[45]  A. Loktin,et al.  The catalogue of open cluster parameters–second version , 2001 .

[46]  S. Aarseth,et al.  The formation of a bound star cluster: from the orion nebula cluster to the pleiades , 2000, astro-ph/0009470.

[47]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[48]  J. Carpenter,et al.  Embedded Stellar Clusters in the W3/W4/W5 Molecular Cloud Complex , 2000, astro-ph/0005237.

[49]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[50]  F. Schloerb,et al.  The Five College Radio Astronomy Observatory CO Survey of the Outer Galaxy , 1998 .

[51]  Michael J. Kurtz,et al.  RVSAO 2.0: Digital Redshifts and Radial Velocities , 1998, astro-ph/9803252.

[52]  Christopher J. Corbally,et al.  The calibration of MK spectral classes using spectral synthesis. 1: The effective temperature calibration of dwarf stars , 1994 .

[53]  C. Lada,et al.  The formation and early dynamical evolution of bound stellar systems. , 1984 .

[54]  C. Lada,et al.  The formation of massive stars along the W5 ionization front , 1984 .

[55]  M. T. Sandford,et al.  Radiation-driven implosions in molecular clouds , 1982 .

[56]  L. Rickard,et al.  Star formation in IC 1848 A , 1980 .

[57]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[58]  J. Hills The effect of mass loss on the dynamical evolution of a stellar system - Analytic approximations , 1980 .

[59]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[60]  H. Wootten,et al.  Star formation in the bright-rimmed molecular cloud IC 1848 A , 1978 .

[61]  C. Lada,et al.  Sequential formation of subgroups in OB associations , 1977 .

[62]  P. Conti,et al.  Spectroscopic observations of O-type stars.V. The hydrogen lines and lambda 4686 HeII , 1974 .

[63]  A. Blaauw The O Associations in the Solar Neighborhood , 1964 .

[64]  A. Code,et al.  Studies in Galactic STRUCTURE.II.LUMINOSITY Classification for 1270 Blue Giant Stars. , 1955 .

[65]  S. Sharpless The distances and dimensions of IC 1805, IC 1848, and IC 410. , 1955 .

[66]  Richard M. West,et al.  Highlights of astronomy , 1968 .

[67]  E. Salpeter The Luminosity function and stellar evolution , 1955 .