Sensitivity of Idealized Supercell Simulations to Horizontal Grid Spacing: Implications for Warn-on-Forecast

AbstractThe Warn-on-Forecast (WoF) program aims to deploy real-time, convection-allowing, ensemble data assimilation and prediction systems to improve short-term forecasts of tornadoes, flooding, lightning, damaging wind, and large hail. Until convection-resolving (horizontal grid spacing Δx < 100 m) systems become available, however, resolution errors will limit the accuracy of ensemble model output. Improved understanding of grid spacing dependence of simulated convection is therefore needed to properly calibrate and interpret ensemble output, and to optimize trade-offs between model resolution and other computationally constrained parameters like ensemble size and forecast lead time.Toward this end, the authors examine grid spacing sensitivities of simulated supercells over Δx of 333 m–4 km. Storm environment and physics parameterization are varied among the simulations. The results suggest that 4-km grid spacing is too coarse to reliably simulate supercells, occasionally leading to premature storm dem...

[1]  W. H. Raymond High-Order Low-Pass Implicit Tangent Filters for Use in Finite Area Calculations , 1988 .

[2]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[3]  A. Noda,et al.  Critical grid size for simulating convective storms: A case study of the Del City supercell storm , 2003 .

[4]  Stephen F. Corfidi,et al.  Cold Pools and MCS Propagation: Forecasting the Motion of Downwind-Developing MCSs , 2003 .

[5]  S. J. Weiss,et al.  Next-Day Convection-Allowing WRF Model Guidance: A Second Look at 2-km versus 4-km Grid Spacing , 2009 .

[6]  Franco Siccardi,et al.  Turbulence Closure Parameterization and Grid Spacing Effects in Simulated Supercell Storms , 2010 .

[7]  Conrad L. Ziegler,et al.  Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. , 1985 .

[8]  K. Droegemeier,et al.  The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters , 2002 .

[9]  David J. Stensrud,et al.  On the Predictability of Supercell Thunderstorm Evolution , 2013 .

[10]  Stanley G. Benjamin,et al.  CONVECTIVE-SCALE WARN-ON-FORECAST SYSTEM: A vision for 2020 , 2009 .

[11]  R. Rotunno,et al.  A Generalization of Lorenz’s Model for the Predictability of Flows with Many Scales of Motion , 2008 .

[12]  Corey K. Potvin,et al.  Progress and challenges with Warn-on-Forecast , 2012 .

[13]  G. Bryan,et al.  Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics , 2012 .

[14]  H. Niino,et al.  An Improved Mellor–Yamada Level-3 Model with Condensation Physics: Its Design and Verification , 2004 .

[15]  J. Wyngaard,et al.  Resolution Requirements for the Simulation of Deep Moist Convection , 2003 .

[16]  J. Wyngaard Toward Numerical Modeling in the “Terra Incognita” , 2004 .

[17]  The motion of simulated convective storms as a function of basic environmental parameters , 2004 .

[18]  Jerry M. Straka,et al.  The Impact of Spatial Variations of Low-Level Stability on the Life Cycle of a Simulated Supercell Storm , 2010 .

[19]  E. McCaul,et al.  Variability of Updraft and Downdraft Characteristics in a Large Parameter Space Study of Convective Storms , 2009 .

[20]  C. Lac,et al.  Sensitivity of high‐resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization , 2015 .

[21]  Kevin W. Manning,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis , 2004 .

[22]  P. Markowski,et al.  Numerical Simulations of Radiative Cooling beneath the Anvils of Supercell Thunderstorms , 2010 .

[23]  Eric C. Bruning,et al.  Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics , 2010 .

[24]  Joseph B. Klemp,et al.  The Influence of the Shear-Induced Pressure Gradient on Thunderstorm Motion , 1982 .

[25]  Joseph B. Klemp,et al.  The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy , 1982 .

[26]  Barry E. Schwartz,et al.  An Hourly Assimilation–Forecast Cycle: The RUC , 2004 .

[27]  A. Clark,et al.  Comparison of Next-Day Convection-Allowing Forecasts of Storm motion on 1- and 4-km Grids , 2014 .

[28]  J. Weiss The dynamics of entropy transfer in two-dimensional hydrodynamics , 1991 .

[29]  Corey K. Potvin,et al.  Assessing Ensemble Forecasts of Low-Level Supercell Rotation within an OSSE Framework , 2013 .

[30]  W. Skamarock,et al.  The resolution dependence of explicitly modeled convective systems , 1997 .

[31]  W. Skamarock Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra , 2004 .

[32]  G. Thompson,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization , 2008 .

[33]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[34]  Fanyou Kong,et al.  Object-Based Evaluation of the Impact of Horizontal Grid Spacing on Convection-Allowing Forecasts , 2013 .

[35]  S. J. Weiss,et al.  Some Practical Considerations Regarding Horizontal Resolution in the First Generation of Operational Convection-Allowing NWP , 2008 .

[36]  K. Droegemeier,et al.  The Influence of Horizontal Environmental Variability on Numerically Simulated Convective Storms. Part I: Variations in Vertical Shear , 2007 .

[37]  Dale R. Durran,et al.  Atmospheric Predictability: Why Butterflies Are Not of Practical Importance , 2014 .

[38]  A. Ōkubo Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences , 1970 .

[39]  K. S. Gage,et al.  Evidence far a k−5/3 Law Inertial Range in Mesoscale Two-Dimensional Turbulence , 1979 .