Central Weighted ENO Schemes for Hyperbolic Conservation Laws on Fixed and Moving Unstructured Meshes

We present a novel family of arbitrary high order accurate central Weighted ENO (CWENO) finite volume schemes for the solution of nonlinear systems of hyperbolic conservation laws on fixed and moving unstructured simplex meshes in two and three space dimensions. Starting from the given cell averages of a function on a triangular or tetrahedral control volume and its neighbors, the nonlinear CWENO reconstruction yields a high order accurate and essentially nonoscillatory polynomial that is defined everywhere in the cell. Compared to other WENO schemes on unstructured meshes, the total stencil size is the minimum possible one, as in classical pointwise WENO schemes of Jiang and Shu. However, the linear weights can be chosen arbitrarily, which makes the practical implementation on general unstructured meshes particularly simple. We make use of the piecewise polynomials generated by the CWENO reconstruction operator inside the framework of fully discrete and high order accurate one-step ADER finite volume sch...

[1]  Michael Dumbser,et al.  High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics , 2013, 1310.7256.

[2]  Eleuterio F. Toro,et al.  A sub-cell WENO reconstruction method for spatial derivatives in the ADER scheme , 2013, J. Comput. Phys..

[3]  Jérôme Breil,et al.  A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..

[4]  Chi-Wang Shu Discontinuous Galerkin Methods , 2010 .

[5]  Oliver Kolb,et al.  On the Full and Global Accuracy of a Compact Third Order WENO Scheme , 2014, SIAM J. Numer. Anal..

[6]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[7]  Manuel Jesús Castro Díaz,et al.  Approximate Osher-Solomon schemes for hyperbolic systems , 2016, Appl. Math. Comput..

[8]  Claus R. Goetz,et al.  Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws , 2015, Math. Comput..

[9]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[10]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[11]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[12]  Michael Dumbser,et al.  An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes , 2016, J. Sci. Comput..

[13]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[14]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[15]  W. Marsden I and J , 2012 .

[16]  C. Parés Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .

[17]  Markus Berndt,et al.  Using the feasible set method for rezoning in ALE , 2010, ICCS.

[18]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[19]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[20]  Pierre-Henri Maire,et al.  A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations , 2016, J. Comput. Phys..

[21]  Christiane Helzel,et al.  Finite volume WENO methods for hyperbolic conservation laws on Cartesian grids with adaptive mesh refinement , 2016, Appl. Math. Comput..

[22]  Guy Capdeville,et al.  A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes , 2008, J. Comput. Phys..

[23]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[24]  G. Henry,et al.  LIBXSMM: A High Performance Library for Small Matrix Multiplications , 2015 .

[25]  J. M. Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium. I: Initial average subsonic flow , 1989 .

[26]  Michael Dumbser,et al.  Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers , 2015, J. Comput. Phys..

[27]  Gabriella Puppo,et al.  Numerical entropy and adaptivity for finite volume schemes , 2011 .

[28]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[29]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[30]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[31]  M. Semplice,et al.  Adaptive Mesh Refinement for Hyperbolic Systems Based on Third-Order Compact WENO Reconstruction , 2014, Journal of Scientific Computing.

[32]  Michael Dumbser,et al.  Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting , 2014, 1412.0081.

[33]  Jianxian Qiu,et al.  On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .

[34]  William J. Rider,et al.  Revisiting Wall Heating , 2000 .

[35]  Pierre-Henri Maire,et al.  A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[36]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[37]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[38]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[39]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[40]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[41]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[42]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[43]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[44]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[45]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[46]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[47]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[48]  Christiane Helzel,et al.  Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids , 2014, Journal of Scientific Computing.

[49]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[50]  Raphaël Loubère,et al.  "Curl-q": A vorticity damping artificial viscosity for essentially irrotational Lagrangian hydrodynamics calculations , 2006, J. Comput. Phys..

[51]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[52]  Raphaël Loubère,et al.  3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .

[53]  Pierre-Henri Maire,et al.  A unified sub‐cell force‐based discretization for cell‐centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[54]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[55]  Chi-Wang Shu,et al.  High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..

[56]  Eleuterio F. Toro,et al.  Finite-volume WENO schemes for three-dimensional conservation laws , 2004 .

[57]  Chi-Wang Shu,et al.  A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry , 2010, J. Comput. Phys..

[58]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .

[59]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[60]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[61]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[62]  Michael Dumbser,et al.  Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws , 2015, J. Comput. Phys..

[63]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[64]  Matteo Semplice,et al.  On the Accuracy of WENO and CWENO Reconstructions of Third Order on Nonuniform Meshes , 2015, Journal of Scientific Computing.

[65]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[66]  Rong Wang,et al.  Observations on the fifth-order WENO method with non-uniform meshes , 2008, Appl. Math. Comput..

[67]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[68]  Gabriella Puppo,et al.  A Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws , 2002, SIAM J. Sci. Comput..

[69]  Gabriella Puppo,et al.  A third order central WENO scheme for 2D conservation laws , 2000 .

[70]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[71]  Gabriella Puppo,et al.  Well-Balanced High Order 1D Schemes on Non-uniform Grids and Entropy Residuals , 2014, J. Sci. Comput..

[72]  Michael Dumbser,et al.  A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..

[73]  Chi-Wang Shu,et al.  Multidomain WENO Finite Difference Method with Interpolation at Subdomain Interfaces , 2003, J. Sci. Comput..

[74]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[75]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[76]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[77]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[78]  J. Michael Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium , 1991 .

[79]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[80]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[81]  Gabriella Puppo,et al.  CWENO: Uniformly accurate reconstructions for balance laws , 2016, Math. Comput..

[82]  Yong-Tao Zhang,et al.  Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes , 2008 .

[83]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[84]  Eleuterio F. Toro,et al.  Solvers for the high-order Riemann problem for hyperbolic balance laws , 2008, J. Comput. Phys..

[85]  C. L. Rousculp,et al.  A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .

[86]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[87]  Manuel Jesús Castro Díaz,et al.  High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems , 2006, Math. Comput..

[88]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[89]  Michael Dumbser,et al.  A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes , 2016, J. Comput. Phys..

[90]  Juan Cheng,et al.  Improvement on Spherical Symmetry in Two-Dimensional Cylindrical Coordinates for a Class of Control Volume Lagrangian Schemes , 2012 .