Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles

We study the risk assessment of uncertain cash flows in terms of dynamic convex risk measures for processes as introduced in Cheridito et al. (Electron. J. Probab. 11(3):57–106, 2006). These risk measures take into account not only the amounts but also the timing of a cash flow. We discuss their robust representation in terms of suitably penalised probability measures on the optional σ-field. This yields an explicit analysis both of model and discounting ambiguity. We focus on supermartingale criteria for time consistency. In particular, we show how “bubbles” may appear in the dynamic penalisation, and how they cause a breakdown of asymptotic safety of the risk assessment procedure.

[1]  Berend Roorda,et al.  Time Consistency Conditions for Acceptability Measures, with an Application to Tail Value at Risk , 2007 .

[2]  David Heath,et al.  Coherent multiperiod risk adjusted values and Bellman’s principle , 2007, Ann. Oper. Res..

[3]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[4]  J. Doob Stochastic processes , 1953 .

[5]  N. El Karoui,et al.  CASH SUBADDITIVE RISK MEASURES AND INTEREST RATE AMBIGUITY , 2007, 0710.4106.

[6]  Hans Föllmer,et al.  MONETARY VALUATION OF CASH FLOWS UNDER KNIGHTIAN UNCERTAINTY , 2011 .

[7]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[8]  M. Frittelli,et al.  RISK MEASURES AND CAPITAL REQUIREMENTS FOR PROCESSES , 2006 .

[9]  Jocelyne Bion-Nadal,et al.  Dynamic risk measures: Time consistency and risk measures from BMO martingales , 2008, Finance Stochastics.

[10]  Freddy Delbaen,et al.  Representation of the penalty term of dynamic concave utilities , 2008, Finance Stochastics.

[11]  Leonard Rogers,et al.  VALUATIONS AND DYNAMIC CONVEX RISK MEASURES , 2007, 0709.0232.

[12]  Constantinos Kardaras,et al.  Numéraire-invariant preferences in financial modeling , 2009, 0903.3736.

[13]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[14]  Kiyosi Itô,et al.  Transformation of Markov processes by multiplicative functionals , 1965 .

[15]  Irina Penner Dynamic convex risk measures: time consistency, prudence, and sustainability , 2007 .

[16]  K. Parthasarathy PROBABILITY MEASURES IN A METRIC SPACE , 1967 .

[17]  Sina Tutsch Update rules for convex risk measures , 2008 .

[18]  F. Delbaen Coherent Risk Measures on General Probability Spaces , 2002 .

[19]  H. Föllmer,et al.  Convex risk measures and the dynamics of their penalty functions , 2006 .

[20]  F. Delbaen,et al.  Coherent and convex monetary risk measures for bounded càdlàg processes , 2004 .

[21]  S. Weber,et al.  DISTRIBUTION‐INVARIANT RISK MEASURES, INFORMATION, AND DYNAMIC CONSISTENCY , 2006 .

[22]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[23]  Patrick Cheridito,et al.  Coherent and convex monetary risk measures for unbounded càdlàg processes , 2005, Finance Stochastics.

[24]  F. Delbaen,et al.  Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes , 2004, math/0410453.

[25]  Giacomo Scandolo,et al.  Conditional and dynamic convex risk measures , 2005, Finance Stochastics.

[26]  B. Roorda,et al.  COHERENT ACCEPTABILITY MEASURES IN MULTIPERIOD MODELS , 2005 .

[27]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[28]  Massimo Marinacci,et al.  Dynamic variational preferences , 2006, J. Econ. Theory.

[29]  Sina Tutsch Konsistente und konsequente dynamische Risikomaße und das Problem der Aktualisierung , 2007 .

[30]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[31]  Frank Riedel,et al.  Dynamic Coherent Risk Measures , 2003 .

[32]  J. Bion-Nadal Time consistent dynamic risk processes , 2009 .

[33]  Beatrice Acciaio,et al.  Dynamic risk measures , 2011 .

[34]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[35]  Patrick Cheridito,et al.  COMPOSITION OF TIME-CONSISTENT DYNAMIC MONETARY RISK MEASURES IN DISCRETE TIME , 2011 .

[36]  F. Delbaen The Structure of m–Stable Sets and in Particular of the Set of Risk Neutral Measures , 2006 .

[37]  F. Delbaen Coherent risk measures , 2000 .

[38]  Martin Schweizer Dynamic utility indierence valuation via convex risk measures , 2005 .