Anderson’s Orthogonality Catastrophe

We give an upper bound on the modulus of the ground-state overlap of two non-interacting fermionic quantum systems with N particles in a large but finite volume Ld of d-dimensional Euclidean space. The underlying one-particle Hamiltonians of the two systems are standard Schrödinger operators that differ by a non-negative compactly supported scalar potential. In the thermodynamic limit, the bound exhibits an asymptotic power-law decay in the system size L, showing that the ground-state overlap vanishes for macroscopic systems. The decay exponent can be interpreted in terms of the total scattering cross section averaged over all incident directions. The result confirms and generalises P. W. Anderson’s informal computation (Phys. Rev. Lett. 18:1049–1051, 1967).

[1]  Fermi edge singularities in the mesoscopic regime: Anderson orthogonality catastrophe , 2005, cond-mat/0503330.

[2]  J. Delft,et al.  Absorption and emission in quantum dots : Fermi surface effects of Anderson excitons , 2005, cond-mat/0502329.

[3]  Peter Stollmann,et al.  Caught by Disorder: Bound States in Random Media , 2001 .

[4]  H. Baumgärtel,et al.  Mathematical Scattering Theory , 1983 .

[5]  B. Simon,et al.  Schrödinger Semigroups , 2007 .

[6]  A. Pushnitski Spectral Theory of Discontinuous Functions of Self-Adjoint Operators: Essential Spectrum , 2009, 0907.3370.

[7]  K. Yosida,et al.  Orthogonality Catastrophe due to Local Electron Correlation , 1978 .

[8]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[9]  E. Lieb,et al.  Energy cost to make a hole in the Fermi sea. , 2011, Physical review letters.

[10]  Anderson’s Orthogonality Catastrophe for One-Dimensional Systems , 2013, 1301.4923.

[11]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[13]  Pedro Freitas,et al.  Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums , 2004, Math. Comput..

[14]  Lokenath Debnath,et al.  Introduction to the Theory and Application of the Laplace Transformation , 1974, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  A commutator method for the diagonalization of Hankel operators , 2010 .

[16]  M. Heyl,et al.  Crooks relation in optical spectra: universality in work distributions for weak local quenches. , 2010, Physical review letters.

[17]  D. Hundertmark,et al.  Continuity properties of Schrödinger semigroups with magnetic fields , 1998, math-ph/9808004.

[18]  Philip W. Anderson,et al.  Infrared Catastrophe in Fermi Gases with Local Scattering Potentials , 1967 .

[19]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[20]  M. Hentschel,et al.  Orthogonality catastrophe in ballistic quantum dots: Role of level degeneracies and confinement geometry , 2010 .

[21]  D. Bessis,et al.  Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics , 1975 .

[22]  D. Langreth Singularities in the X-Ray Absorption and Emission of Metals , 1969 .

[23]  Bernard Helffer,et al.  Equation de Schrödinger avec champ magnétique et équation de Harper , 1989 .

[24]  Camil Muscalu,et al.  Classical and Multilinear Harmonic Analysis , 2013 .

[25]  F. Guinea,et al.  Orthogonality catastrophe and Kondo effect in graphene , 2007, 0705.0522.

[26]  Israel Michael Sigal,et al.  The quantum N-body problem , 2000 .

[27]  P. Müller,et al.  Anderson’s Orthogonality Catastrophe , 2013, Communications in Mathematical Physics.

[28]  H. Bauer Measure and integration theory , 2001 .

[29]  A. Weichselbaum,et al.  Many-body dynamics of exciton creation in a quantum dot by optical absorption: a quantum quench towards Kondo correlations. , 2011, Physical review letters.

[30]  D. Hamann Orthogonality Catastrophe in Metals , 1971 .

[31]  D. Yafaev Scattering Theory: Some Old and New Problems , 2000 .

[32]  J. Weidmann Linear Operators in Hilbert Spaces , 1980 .

[33]  B. Simon Trace ideals and their applications , 1979 .

[34]  C. Dominicis,et al.  Singularities in the X-Ray Absorption and Emission of Metals. III. One-Body Theory Exact Solution , 1969 .

[35]  Barry Simon,et al.  Methods of modern mathematical physics. III. Scattering theory , 1979 .

[36]  A. Klein,et al.  Operator kernel estimates for functions of generalized Schrödinger operators , 2002 .

[37]  Bounds on the Spectral Shift Function and the Density of States , 2004, math-ph/0412078.

[38]  Jürgen Elstrodt,et al.  Maß-und Integrationstheorie , 1996 .

[39]  P. Anderson Ground State of a Magnetic Impurity in a Metal , 1967 .

[40]  W. Kirsch Small perturbations and the eigenvalues of the Laplacian on large bounded domains , 1987 .

[41]  Y. Tanabe,et al.  Theory of the soft-x-ray edge problem in simple metals: historical survey and recent developments , 1990 .

[42]  M. Š. Birman,et al.  THE STATIONARY METHOD IN THE ABSTRACT THEORY OF SCATTERING , 1967 .

[43]  An adiabatic theorem for section determinants of spectral projections , 2005 .

[44]  Marion Kee,et al.  Analysis , 2004, Machine Translation.