A cost-efficient high-performance bit-serial architecture for robot inverse dynamics computation

A novel cost-efficient parallel and pipelined bit-serial array architecture is proposed for the computation of robot inverse dynamics. It achieves a certain bit-serial execution-time lower bound. The core of the system consists of two arrays of multifunctional bit-serial cells. One of the arrays computes the forward iterations, and the other one evaluates the backward recursions, of the Newton-Euler dynamics algorithm. At the current state of technology, the resulting high-performance system may be realized in only two custom VLSI chips and a minimum number of first-in-first-out register files. The organization, operation, and performance of the proposed array structure is discussed. The architecture and functionality of an individual multifunctional bit-serial cell used as the building block of the array structure is described.

[1]  C. S. George Lee,et al.  Efficient parallel algorithm for robot inverse dynamics computation , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[2]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[3]  Hironori Kasahara,et al.  Parallel processing of robot-arm control computation on a multimicroprocessor system , 1985, IEEE J. Robotics Autom..

[4]  Richard F. Lyon,et al.  Two's Complement Pipeline Multipliers , 1976, IEEE Trans. Commun..

[5]  Richard H. Lathrop,et al.  Parallelism in Manipulator Dynamics , 1985 .

[6]  David E. Orin,et al.  Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods , 1979 .

[7]  C. S. George Lee,et al.  A multiprocessor-based controller for the control of mechanical manipulators , 1985, IEEE J. Robotics Autom..

[8]  Tohru Watanabe,et al.  Improvement in the Computing Time of Robot Manipulators Using a Multimicroprocessor , 1986 .

[9]  A. Bejczy Robot arm dynamics and control , 1974 .

[10]  N. F. Goncalves,et al.  NORA: a racefree dynamic CMOS technique for pipelined logic structures , 1983 .

[11]  Chang-Huan Liu,et al.  Multi-microprocessor-based cartesian-space control techniques for a mechanical manipulator , 1986, IEEE J. Robotics Autom..

[12]  J. Y. S. LUH,et al.  Scheduling of Parallel Computation for a Computer-Controlled Mechanical Manipulator , 1982, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  James H. Herzog,et al.  Distributed Computer Architecture and Fast Parallel Algorithms in Real-Time Robot Control , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  John M. Hollerbach,et al.  A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  Carver A. Mead,et al.  Bit-Serial Inner Product Processors in VLSI , 1981 .

[16]  S. Lawson,et al.  VLSI Signal Processing: a Bit-Serial Approach , 1986 .

[17]  David E. Orin,et al.  Pipeline/Parallel algorithms for the jacobian and inverse dynamics computations , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[18]  C. G. Lee,et al.  Development of the generalized d'Alembert equations of motion for mechanical manipulators , 1983, The 22nd IEEE Conference on Decision and Control.

[19]  C. M. Lee,et al.  High-speed compact circuits with CMOS , 1982 .

[20]  Yuan F. Zheng,et al.  Computation of Multibody System Dynamics by a Multiprocessor Scheme , 1986, IEEE Transactions on Systems, Man, and Cybernetics.