A Virtual Actuator Approach for Fault Tolerant Control of Switching LPV Systems

Abstract In this paper, virtual actuators are proposed as a Fault Tolerant Control (FTC) strategy for switching Linear Parameter Varying (LPV) systems subject to actuator faults. The overall solution relies on the addition of a virtual actuator block that keeps the stability and some desired performances without the need of retuning the nominal controller. It is shown that the design can be performed using polytopic techniques and Linear Matrix Inequalities (LMIs). Simulation results obtained with a four-wheeled omnidirectional mobile robot example are used to demonstrate the effectiveness of the proposed approach.

[1]  Youmin Zhang,et al.  Bibliographical review on reconfigurable fault-tolerant control systems , 2003, Annu. Rev. Control..

[2]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[3]  Jeff S. Shamma,et al.  An Overview of LPV Systems , 2012 .

[4]  Guang-Hong Yang,et al.  Adaptive logic‐based switching fault‐tolerant controller design for nonlinear uncertain systems , 2011 .

[5]  Fen Wu,et al.  Switching LPV control of an F-16 aircraft via controller state reset , 2006, IEEE Trans. Control. Syst. Technol..

[6]  Jan H. Richter,et al.  Reconfigurable Control of Nonlinear Dynamical Systems: A fault-hiding Approach , 2011 .

[7]  Damiano Rotondo,et al.  Passive and active FTC comparison for polytopic LPV systems , 2013, 2013 European Control Conference (ECC).

[8]  Fen Wu,et al.  Switching LPV control designs using multiple parameter-dependent Lyapunov functions , 2004, Autom..

[9]  M. Benosman,et al.  A Survey of Some Recent Results on Nonlinear Fault Tolerant Control , 2010 .

[10]  Fredrik Bruzelius,et al.  Region of attraction estimates for LPV-gain scheduled control systems , 2003, 2003 European Control Conference (ECC).

[11]  Damiano Rotondo,et al.  Model Reference Switching Quasi-LPV Control of a Four Wheeled Omnidirectional Robot , 2014 .

[12]  Nathan van de Wouw,et al.  Reconfigurable control of piecewise affine systems with actuator and sensor faults: Stability and tracking , 2011, Autom..

[13]  Bin Jiang,et al.  Supervisory fault-tolerant regulation for nonlinear systems , 2011 .

[14]  Control Reconfiguration After Actuator Failures Using Disturbance Decoupling Methods , 2006, IEEE Transactions on Automatic Control.

[15]  Józef Korbicz,et al.  Active fault-tolerant control design for Takagi-Sugeno fuzzy systems , 2011 .

[16]  Didier Theilliol,et al.  Fault-tolerant Control Systems: Design and Practical Applications , 2009 .

[17]  Jin Jiang,et al.  Fault-tolerant control systems: A comparative study between active and passive approaches , 2012, Annu. Rev. Control..

[18]  Ricardo Salvador Sánchez Peña,et al.  LPV control of a 6-DOF vehicle , 2002, IEEE Trans. Control. Syst. Technol..

[19]  Bin Jiang,et al.  Robust fault tolerant tracking control with application to hybrid nonlinear systems , 2009 .

[20]  Armando Sousa,et al.  Modeling and Assessing of Omni-Directional Robots with Three and Four Wheels , 2009 .

[21]  Bin Jiang,et al.  Results and perspectives on fault tolerant control for a class of hybrid systems , 2011, Int. J. Control.

[22]  Damiano Rotondo,et al.  A virtual actuator and sensor approach for fault tolerant control of LPV systems , 2014 .

[23]  Didier Theilliol,et al.  Fault Tolerant control Design for switched Systems , 2006, ADHS.

[24]  Gautam Biswas,et al.  Hybrid fault adaptive control of a wheeled mobile robot , 2003 .

[25]  Bin Jiang,et al.  Active fault‐tolerant control for switched systems with time delay , 2011 .

[26]  Damiano Rotondo,et al.  FDI and FTC of wind turbines using the interval observer approach and virtual actuators/sensors , 2014 .

[27]  Youmin Zhang,et al.  Tolerance of intermittent faults in spacecraft attitude control: switched system approach , 2012 .

[28]  Georgi M. Dimirovski,et al.  Control of switched LPV systems using common Lyapunov function method and an F-16 aircraft application , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[29]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[30]  Mohammad Javad Khosrowjerdi,et al.  Fault tolerant control using virtual actuator for continuous‐time Lipschitz nonlinear systems , 2014 .

[31]  Bin Jiang,et al.  Fault Tolerant Control Design for Hybrid Systems , 2010 .

[32]  Guang-Hong Yang,et al.  Switching fault-tolerant control for a class of nonlinear systems with actuator faults , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).

[33]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2004, IEEE Transactions on Automatic Control.