Spin Needlets for Cosmic Microwave Background Polarization Data Analysis

Scalar wavelets have been used extensively in the analysis of cosmic microwave background (CMB) temperature maps. Spin needlets are a new form of (spin) wavelets which were introduced in the mathematical literature by Geller and Marinucci (2008) as a tool for the analysis of spin random fields. Here we adopt the spin needlet approach for the analysis of CMB polarization measurements. The outcome of experiments measuring the polarization of the CMB are maps of the Stokes Q and U parameters which are spin two quantities. Here we discuss how to transform these spin two maps into spin two needlet coefficients and outline briefly how these coefficients can be used in the analysis of CMB polarization data. We review the most important properties of spin needlets, such as localization in pixel and harmonic space and asymptotic uncorrelation. We discuss several statistical applications, including the relation of angular power spectra to the needlet coefficients, testing for non-Gaussianity on polarization data, and reconstruction of the E and B scalar maps.

[1]  P. Baldi,et al.  Adaptive density estimation for directional data using needlets , 2008, 0807.5059.

[2]  O. Blanc,et al.  Exact reconstruction with directional wavelets on the sphere , 2007, 0712.3519.

[3]  Jason D. McEwen,et al.  Detection of the integrated Sachs–Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets , 2007 .

[4]  L. Cayón,et al.  The non-Gaussian cold spot in WMAP , 2006 .

[5]  P. Vielva,et al.  Detection of Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year Data Using Spherical Wavelets , 2004 .

[6]  P. Baldi,et al.  Subsampling needlet coefficients on the sphere , 2007, 0706.4169.

[7]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..

[8]  H. K. Eriksen,et al.  Foreground Subtraction of Cosmic Microwave Background Maps Using WI-FIT (Wavelet-Based High-Resolution Fitting of Internal Templates) , 2006 .

[9]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[10]  Jean-Luc Starck,et al.  Cosmological Non-Gaussian Signature Detection: Comparing Performance of Different Statistical Tests , 2005, EURASIP J. Adv. Signal Process..

[11]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[12]  J. D. McEwen,et al.  A high-significance detection of non-Gaussianity in the WMAP 5-yr data using directional spherical wavelets , 2006, 0803.2157.

[13]  P. Vielva,et al.  The Non-Gaussian Cold Spot in the 3 Year Wilkinson Microwave Anisotropy Probe Data , 2007 .

[14]  Asantha Cooray,et al.  Needlet detection of features in the WMAP CMB sky and the impact on anisotropies and hemispherical asymmetries , 2008, 0809.0010.

[15]  P. Baldi,et al.  Spherical Needlets for CMB Data Analysis , 2007, 0707.0844.

[16]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[17]  Daryl Geller,et al.  Nearly tight frames and space-frequency analysis on compact manifolds , 2007, 0706.3642.

[18]  Laurent Jacques,et al.  Wavelets on the sphere: implementation and approximations , 2002 .

[19]  M. Cruz,et al.  The non‐Gaussian cold spot in Wilkinson Microwave Anisotropy Probe: significance, morphology and foreground contribution , 2006, astro-ph/0601427.

[20]  P. Vandergheynst,et al.  Wavelets on the 2-sphere: A group-theoretical approach , 1999 .

[21]  Domenico Marinucci,et al.  The needlets bispectrum , 2008, 0802.4020.

[22]  Domenico Marinucci,et al.  Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy , 2006 .

[23]  Domenico Marinucci,et al.  Search for non-Gaussianity in pixel, harmonic and wavelet space: compared and combined , 2004 .

[24]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[25]  Pierre Vandergheynst,et al.  Wavelets on the Two-Sphere and Other Conic Sections , 2007 .

[26]  Marcos López-Caniego,et al.  Wavelets on the sphere. Application to the detection problem , 2006, 2006 14th European Signal Processing Conference.

[27]  L. Toffolatti,et al.  Point source detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps , 2002, astro-ph/0212578.

[28]  P. Baldi,et al.  Asymptotics for spherical needlets , 2006, math/0606599.

[29]  J. Cardoso,et al.  A full sky, low foreground, high resolution CMB map from WMAP , 2008, 0807.0773.

[30]  Domenico Marinucci,et al.  On the dependence structure of wavelet coefficients for spherical random fields , 2008, 0805.4154.

[31]  Paolo Baldi,et al.  Spherical needlets for cosmic microwave background data analysis , 2008 .

[32]  G. Fay,et al.  Consistency of a needlet spectral estimator on the sphere , 2008, 0807.2162.

[33]  J. Delabrouille,et al.  CMB power spectrum estimation using wavelets , 2008, 0807.1113.

[34]  Fr'ed'eric Guilloux,et al.  Practical wavelet design on the sphere , 2007, 0706.2598.

[35]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[36]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[37]  Domenico Marinucci,et al.  Spin Wavelets on the Sphere , 2008, 0811.2935.

[38]  Laurent Jacques,et al.  Fast spin ±2 spherical harmonics transforms and application in cosmology , 2007, J. Comput. Phys..

[39]  L. Cayón,et al.  The Non-Gaussian Cold Spot in the 3 Year Wilkinson Microwave Anisotropy Probe Data , 2006, astro-ph/0603859.

[40]  I. Johnstone,et al.  Density estimation by wavelet thresholding , 1996 .

[41]  Pencho Petrushev,et al.  Decomposition of Besov and Triebel–Lizorkin spaces on the sphere , 2006 .

[42]  Azita Mayeli Asymptotic Uncorrelation for Mexican Needlets , 2008 .

[43]  Jean-Luc Starck,et al.  Blind Component Separation in Wavelet Space: Application to CMB Analysis , 2005, EURASIP J. Adv. Signal Process..

[44]  Joseph Silk,et al.  Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis , 2007, 0705.0810.

[45]  Nizhnij Arkhyz,et al.  Gauss-Legendre Sky Pixelization (GLESP) for CMB maps , 2008 .