Covariance Regression Analysis

ABSTRACT This article introduces covariance regression analysis for a p-dimensional response vector. The proposed method explores the regression relationship between the p-dimensional covariance matrix and auxiliary information. We study three types of estimators: maximum likelihood, ordinary least squares, and feasible generalized least squares estimators. Then, we demonstrate that these regression estimators are consistent and asymptotically normal. Furthermore, we obtain the high dimensional and large sample properties of the corresponding covariance matrix estimators. Simulation experiments are presented to demonstrate the performance of both regression and covariance matrix estimates. An example is analyzed from the Chinese stock market to illustrate the usefulness of the proposed covariance regression model. Supplementary materials for this article are available online.

[1]  T. W. Anderson Asymptotically Efficient Estimation of Covariance Matrices with Linear Structure , 1973 .

[2]  Forward adaptive banding for estimating large covariance matrices , 2011 .

[3]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.

[4]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[5]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[6]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[7]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[8]  Jeffrey M. Wooldridge,et al.  Introductory Econometrics: A Modern Approach , 1999 .

[9]  Jiahui Wang,et al.  Modeling Financial Time Series with S-PLUS® , 2003 .

[10]  Timothy G. Conley,et al.  A new semiparametric spatial model for panel time series , 2001 .

[11]  Hansheng Wang,et al.  Nonparametric Covariance Model , 2008, Statistica Sinica.

[12]  R. Fletcher Practical Methods of Optimization , 1988 .

[13]  I. Johnstone,et al.  On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.

[14]  Jianqing Fan,et al.  High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.

[15]  Jianqing Fan,et al.  Robust Pattern Guided Estimation of Large Covariance Matrix , 2014 .

[16]  Tiejun Tong,et al.  Optimal Shrinkage Estimation of Variances With Applications to Microarray Data Analysis , 2007 .

[17]  Edzer Pebesma,et al.  Applied Spatial Data Analysis with R. Springer , 2008 .

[18]  Josef Lakonishok,et al.  The Risk and Return from Factors , 1997, Journal of Financial and Quantitative Analysis.

[19]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[20]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[21]  George A. F. Seber,et al.  A matrix handbook for statisticians , 2007 .

[22]  Guangqing Chi,et al.  Applied Spatial Data Analysis with R , 2015 .

[23]  Jeong‐Bon Kim,et al.  Ownership Concentration, Foreign Shareholding, Audit Quality, and Stock Price Synchronicity: Evidence from China , 2009 .

[24]  Jeff A. Bilmes,et al.  Factored sparse inverse covariance matrices , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[25]  H. Zou,et al.  Positive-Definite ℓ1-Penalized Estimation of Large Covariance Matrices , 2012, 1208.5702.

[26]  Hansheng Wang Forward Regression for Ultra-High Dimensional Variable Screening , 2009 .

[27]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[28]  Caroline Uhler,et al.  Maximum likelihood estimation for linear Gaussian covariance models , 2014, 1408.5604.

[29]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[30]  Peter D. Hoff,et al.  A Covariance Regression Model , 2011, 1102.5721.

[31]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[32]  Ted H. Szatrowski,et al.  Necessary and Sufficient Conditions for Explicit Solutions in the Multivariate Normal Estimation Problem for Patterned Means and Covariances , 1980 .

[33]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[34]  George A. Akerlof Social Distance and Social Decisions , 1997 .

[35]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[36]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[37]  Yumou Qiu,et al.  Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation , 2012, 1208.3321.

[38]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[39]  E. Glaeser,et al.  Crime and Social Interactions , 1995 .

[40]  E. Demidenko,et al.  Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[41]  T. Cai,et al.  Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices , 2011, 1102.2925.

[42]  Ana‐Maria Fuertes,et al.  Panel Time Series , 2018, Panel Data Econometrics with R.

[43]  James R. Schott,et al.  Matrix Analysis for Statistics , 2005 .

[44]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[45]  William A. Brock,et al.  Discrete Choice with Social Interactions , 2001 .

[46]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[47]  Jianqing Fan,et al.  High Dimensional Covariance Matrix Estimation in Approximate Factor Models , 2011, Annals of statistics.

[48]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[49]  Tom Leonard,et al.  The Matrix-Logarithmic Covariance Model , 1996 .

[50]  Weidong Liu,et al.  Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.

[51]  Christian P. Robert,et al.  Statistics for Spatio-Temporal Data , 2014 .

[52]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[53]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .