Good comprehensive performance of Laves phase Hf1-Ta Fe2 as negative thermal expansion materials

[1]  A. Pathak,et al.  Manipulating the stability of crystallographic and magnetic sub-lattices: A first-order magnetoelastic transformation in transition metal based Laves phase , 2018, Acta Materialia.

[2]  M. Azuma,et al.  Colossal Negative Thermal Expansion in Electron-Doped PbVO3 Perovskites. , 2018, Angewandte Chemie.

[3]  Wenli Song,et al.  Enhanced mechanical properties and large magnetocaloric effect in epoxy-bonded Mn0.98CoGe , 2018, Scripta Materialia.

[4]  X. Xing,et al.  Structure, Magnetism, and Tunable Negative Thermal Expansion in (Hf,Nb)Fe2 Alloys , 2017 .

[5]  K. Liss,et al.  Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf,Ta) Fe 2 , 2016 .

[6]  E. Suard,et al.  Neutron diffraction study of the itinerant-electron metamagnetic Hf0.825Ta0.175Fe2 compound , 2016 .

[7]  Yanwei Ding,et al.  Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3 , 2015, 1508.01063.

[8]  J. Deng,et al.  Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. , 2015, Chemical Society reviews.

[9]  F. Hu,et al.  Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. , 2015, Journal of the American Chemical Society.

[10]  Y. Zou,et al.  Unusual ferromagnetic critical behavior owing to short-range antiferromagnetic correlations in antiperovskite Cu1-xNMn3+x (0.1 ≤ x ≤ 0.4) , 2015, Scientific Reports.

[11]  O. Isnard,et al.  Collapse of ferromagnetism in itinerant-electron system: A magnetic, transport properties, and high pressure study of (Hf,Ta)Fe2 compounds , 2014 .

[12]  Qiang Zhang,et al.  Microstructure and thermo-physical properties of a SiC/pure-Al composite for electronic packaging , 2014, Journal of Materials Science: Materials in Electronics.

[13]  B. Dunn,et al.  Copper-based conductive composites with tailored thermal expansion. , 2013, ACS applied materials & interfaces.

[14]  W. Fan,et al.  Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. , 2013, Journal of the American Chemical Society.

[15]  Y. Liu,et al.  A first-principles study on the structural, elastic and electronic properties of the C14 Laves phase compounds TiX2 (X=Cr, Mn, Fe) , 2013 .

[16]  C. Lind,et al.  Two Decades of Negative Thermal Expansion Research: Where Do We Stand? , 2012, Materials.

[17]  J. Attfield,et al.  Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.

[18]  H. Reveron,et al.  Spark Plasma Sintering of fine alpha-silicon nitride ceramics with LAS for spatial applications , 2011 .

[19]  Rongjin Huang,et al.  Mechanical and transport properties of low-temperature negative thermal expansion material Mn3CuN co-doped with Ge and Si , 2010 .

[20]  K. Chapman,et al.  Pronounced negative thermal expansion from a simple structure: cubic ScF(3). , 2010, Journal of the American Chemical Society.

[21]  H. Takagi,et al.  Mechanical Properties of Metallic Perovskite Mn3Cu0.5Ge0.5N:High‐Stiffness Isotropic Negative Thermal Expansion Material , 2009 .

[22]  Koshi Takenaka,et al.  Magnetovolume effect in Mn 3 Cu 1 − x Ge x N related to the magnetic structure: Neutron powder diffraction measurements , 2008 .

[23]  Yan-Jun Huang,et al.  Mössbauer study of the spin reorientation in pseudobinary alloy Hf0.82Ta0.18Fe2 , 2007 .

[24]  H. Takagi,et al.  Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides , 2005 .

[25]  P. Algarabel,et al.  Magnetic moment at highly frustrated sites of antiferromagnetic Laves phase structures , 2005 .

[26]  Y. Tokura,et al.  Observation of a griffiths phase in paramagnetic La1-xSrxMnO3. , 2005, Physical review letters.

[27]  G. Gorodetsky,et al.  Crystallographic structure and magnetic ordering inCaMn1−xRuxO3(x⩽0.40)manganites: Neutron diffraction, ac susceptibility, and electron magnetic resonance studies , 2004 .

[28]  R. Ballou Geometric frustration in the RMn2 Laves phase compounds , 2001 .

[29]  B. Johansson,et al.  Origin of the Invar effect in iron–nickel alloys , 1999, Nature.

[30]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.

[31]  Wada,et al.  Thermal and transport properties of Hf1-xTaxFe2. , 1993, Physical review. B, Condensed matter.

[32]  K. Hoshi Pressure Effect on the Magnetic Properties of Hf1-xTaxFe2 , 1988 .

[33]  M. Shiga,et al.  Thermal Expansion of TFe2 (T=Zr, Hf, Ti, Sc and Ce) Laves Phase Intermetallic Compounds , 1976 .

[34]  Catherine A. Whitman,et al.  Negative Thermal Expansion (Thermomiotic) Materials , 2013 .