Scalable and inexpensive strategy to fabricate CuO/ZnO nanowire heterojunction for efficient photoinduced water splitting

[1]  Y. Hwang,et al.  Cu-doped flower-like hematite nanostructures for efficient water splitting applications , 2016 .

[2]  Y. Hwang,et al.  Effect of Er3+ and Yb3+ co-doping on the performance of a ZnO-based DSSC , 2016 .

[3]  Michael Grätzel,et al.  Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. , 2016, Nano letters.

[4]  K. Krishnamoorthy,et al.  Highly stable hierarchical p-CuO/ZnO nanorod/nanobranch photoelectrode for efficient solar energy conversion , 2016 .

[5]  J. Epstein,et al.  Non-random patterns in viral diversity , 2015, Nature Communications.

[6]  P. Notten,et al.  Efficient water reduction with gallium phosphide nanowires , 2015, Nature Communications.

[7]  Z. Mi,et al.  Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays , 2015, Nature Communications.

[8]  I. Parkin,et al.  A Method for Synthesis of Renewable Cu2O Junction Composite Electrodes and Their Photoelectrochemical Properties , 2015 .

[9]  Pei Lin,et al.  Electronic Structure Engineering of Cu2O Film/ZnO Nanorods Array All-Oxide p-n Heterostructure for Enhanced Photoelectrochemical Property and Self-powered Biosensing Application , 2015, Scientific Reports.

[10]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[11]  Detlef W. Bahnemann,et al.  Photochemical splitting of water for hydrogen production by photocatalysis: A review , 2014 .

[12]  Mei Zhang,et al.  CuO/Pd composite photocathodes for photoelectrochemical hydrogen evolution reaction , 2014 .

[13]  M. Dahlem,et al.  Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy , 2014, Scientific Reports.

[14]  J. Jasinski,et al.  Tungsten oxide-coated copper oxide nanowire arrays for enhanced activity and durability with photoelectrochemical water splitting , 2013 .

[15]  Alireza Kargar,et al.  ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. , 2013, ACS nano.

[16]  Dunwei Wang,et al.  Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. , 2013, Angewandte Chemie.

[17]  Peng Wang,et al.  Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. , 2013, ACS nano.

[18]  Quan Li,et al.  Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis , 2013 .

[19]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[20]  Peng Wang,et al.  Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy , 2012 .

[21]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[22]  R. Wu,et al.  Conductometric chemical sensor based on individual CuO nanowires , 2010, Nanotechnology.

[23]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[24]  Benjamin J. Hansen,et al.  Transport, Analyte Detection, and Opto-Electronic Response of p-Type CuO Nanowires , 2010 .

[25]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[26]  Meng Tao,et al.  LSDA+U study of cupric oxide : Electronic structure and native point defects , 2006 .

[27]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[28]  Anna N. Ivanovskaya,et al.  A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis , 2003 .

[29]  M. Sunkara,et al.  Scalable synthesis and photoelectrochemical properties of copper oxide nanowire arrays and films , 2013 .