Thermally Induced Changes in Reactivity of Carbons

The reactivity of carbons towards oxidizing gases is affected by heat treatment- it generally decreases with increasing severity of the treatment, though certain exceptions are known. Three different mechanisms are responsible for the observed changes in reactivity- changes in the inherent reactivity of the carbon (often attributed to changes in “active site” concentrations), changes in the physical structure that affects reactant access to the carbon, and changes in the amount, nature, and distribution of catalytic materials within the carbon. Major emphasis given to the first in this review.

[1]  D. McCarthy Changes in oxyreactivity of carbons due to heat treatment and prehydrogenation , 1981 .

[2]  S. Madronich,et al.  Oxidation kinetics of carbon blacks over 1300-1700 K , 1988 .

[3]  D. E. Rosner,et al.  Comparative studies of the attack of pyrolytic and isotropic graphite by atomic and molecular oxygen at high temperatures. , 1968 .

[4]  J. Calo,et al.  Studies on the kinetics and mechanism of the reaction of no with carbon , 1991 .

[5]  J. Nagle,et al.  OXIDATION OF CARBON BETWEEN 1000–2000°C , 1962 .

[6]  L. Meyer Der Mechanismus der Primärreaktion zwischen Sauerstoff und Graphit , 1932 .

[7]  J. Lodge Scientific problems of coal utilization: Edited by Bernard R. Cooper, National Technical Information Center, U.S. Department of Commerce, Springfield, Virginia 22161, 1978, pp. xi + 409. Price $9.00 , 1979 .

[8]  R. F. Strickland-Constable,et al.  Oxidation of carbon between 1000–2400°C , 1964 .

[9]  James L. Johnson Kinetics of Coal Gasification , 1979 .

[10]  D. E. Rosner,et al.  High temperature oxidation of carbon by atomic oxygen , 1965 .

[11]  J. N. Ong,et al.  On the kinetics of oxidation of graphite , 1964 .

[12]  H. Eyring,et al.  A Kinetic Theory for the Oxidation of Carbonized Filaments , 1958 .

[13]  M. A. Elliott,et al.  Chemistry of coal utilization : second supplementary volume , 1981 .

[14]  S. Toyoda,et al.  Fine structure of carbonized coals , 1969 .

[15]  E. S. Golovina,et al.  The gasification of carbon by carbon dioxide at high temperatures and pressures , 1980 .

[16]  J. Dollimore,et al.  Surface studies on graphite. Desorption of surface oxides formed on the clean surface at 300 K , 1978 .

[17]  K. V. Heek,et al.  Reaktionsabläufe unter nicht-isothermen Bedingungen , 1970 .

[18]  X. Duval,et al.  Etude de la reaction du gaz carbonique avec le carbone aux temperatures elevees et sous de basses pressions , 1974 .

[19]  W. DuBroff,et al.  Correlation of reactivity and electrical resistivity of coke , 1982 .

[20]  I. Smith,et al.  The intrinsic reactivity of carbons to oxygen , 1978 .

[21]  D. E. Rosner,et al.  High-temperature kinetics of graphite oxidation by dissociated oxygen , 1965 .

[22]  M.Rashid Khan Significance of char active surface area for appraising the reactivity of low- and high-temperature chars☆ , 1987 .

[23]  S. Rhee,et al.  Oxidation of carbon derived from phenolic resin , 1978 .

[24]  G. Simons The role of pore structure in coal pyrolysis and gasification , 1983 .

[25]  F. Saleeb,et al.  The effect of thermal treatment on the surface area of coal , 1968 .

[26]  F. Williams,et al.  Burning and Extinction of a Laser‐Ignited Carbon Particle in Quiescent Mixtures of Oxygen and Nitrogen , 1976 .

[27]  S. Kelemen,et al.  A comparison of O2 and CO2 oxidation of glassy carbon surfaces , 1985 .

[28]  Philip L. Walker,et al.  Gas Reactions of Carbon , 1975 .

[29]  A. Eucken Der Reaktionsmechanismus der Kohlenstoffverbrennung bei geringen Drucken , 1930 .

[30]  H. H. Lowry Chemistry of coal utilization , 1963 .

[31]  D. E. Rosner,et al.  KINETICS OF THE ATTACK OF REFRACTORY MATERIALS BY DISSOCIATED GASES. , 1970 .

[32]  P. Walker,et al.  THE IMPORTANCE OF ACTIVE SURFACE AREA IN THE CARBON-OXYGEN REACTION1,2 , 1963 .

[33]  L. Blackman Modern aspects of graphite technology , 1970 .

[34]  R. F. Strickland-Constable The interaction of carbon filaments at high temperatures with nitrous oxide, carbon dioxide and water vapour , 1947 .

[35]  P. Walker,et al.  Reactivity of heat-treated coals in air at 500 °C , 1973 .

[36]  J. P. Appleton,et al.  Shock-tube measurements of soot oxidation rates☆ , 1973 .

[37]  G. Somorjai,et al.  TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite , 1988, Carbon.

[38]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[39]  R. F. Strickland-Constable The interaction of oxygen and carbon filaments at high temperatures , 1944 .

[40]  P. Walker,et al.  Reactivity of heat-treated coals in carbon dioxide at 900 °C , 1975 .

[41]  J. Calo,et al.  Some aspects of the thermal annealing process in a phenol-formaldehyde resin char , 1989 .

[42]  S. Kelemen,et al.  O2 oxidation studies of the edge surface of graphite , 1985 .

[43]  Meyer Steinberg,et al.  A diffusion cell method for studying heterogeneous kinetics in the chemical reaction/diffusion controlled region. Kinetics of C + CO2 → 2CO at 1200-1600 °C , 1977 .

[44]  E. Suuberg,et al.  Approximate solution technique for nonisothermal, gaussian distributed activation energy models , 1983 .

[45]  C. Tomes CHEMISTRY AND PHYSICS , 1903 .

[46]  F. McTaggart,et al.  Reactions of carbon with atomic gases , 1959 .

[47]  C. F. Cullis,et al.  Reaction of carbon with nitrogen , 1964 .

[48]  J.F.Rey Boero The reaction of petroleum cokes with air , 1987 .

[49]  D. W. George On the release of metallic impurities from graphite at temperatures above 1750°C , 1965 .

[50]  R. Y. Yang,et al.  Microstructural variations of lignite, subbituminous and bituminous coals and their high temperature chars , 1988 .

[51]  H. Marsh,et al.  Kinetic study of gasification by oxygen and carbon dioxide of pure and doped graphitizable carbons of increasing heat treatment temperatures , 1981 .

[52]  L. Meyer The surface reaction of graphite with oxygen carbon dioxide and water vapour at low pressures , 1938 .

[53]  R. Zahradnik,et al.  Direct methanation of coal , 1971 .