Lasso Regressions and Forecasting Models in Applied Stress Testing

Model selection and forecasting in stress tests can be facilitated using machine learning techniques. These techniques have proved robust in other fields for dealing with the curse of dimensionality, a situation often encountered in applied stress testing. Lasso regressions, in particular, are well suited for building forecasting models when the number of potential covariates is large, and the number of observations is small or roughly equal to the number of covariates. This paper presents a conceptual overview of lasso regressions, explains how they fit in applied stress tests, describes its advantages over other model selection methods, and illustrates their application by constructing forecasting models of sectoral probabilities of default in an advanced emerging market economy.

[1]  Matteo Barigozzi,et al.  NETS: Network Estimation for Time Series , 2018 .

[2]  Bruce E. Hansen,et al.  The Risk of James–Stein and Lasso Shrinkage , 2016 .

[3]  A. Kock CONSISTENT AND CONSERVATIVE MODEL SELECTION WITH THE ADAPTIVE LASSO IN STATIONARY AND NONSTATIONARY AUTOREGRESSIONS , 2015, Econometric Theory.

[4]  Structural Market-Based Top–Down Stress Tests of the Banking System , 2015 .

[5]  Kamil Yilmaz,et al.  Estimating Global Bank Network Connectedness , 2015 .

[6]  Trevor Hastie,et al.  Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .

[7]  Oscar A. Mitnik,et al.  A Top-down Approach to Stress-testing Banks , 2015 .

[8]  Athanasios Orphanides Stress Tests as a Policy Tool: The European Experience During the Crisis , 2014 .

[9]  Jiahan Li,et al.  Forecasting Macroeconomic Time Series: LASSO-Based Approaches and Their Forecast Combinations with Dynamic Factor Models , 2014 .

[10]  Ana Arribas-Gil,et al.  LASSO-type estimators for semiparametric nonlinear mixed-effects models estimation , 2012, Stat. Comput..

[11]  EBA/SSM stress test: The macroeconomic adverse scenario , 2014 .

[12]  Deborah Gefang,et al.  Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage , 2014 .

[13]  Paul Glasserman,et al.  Stress Tests to Promote Financial Stability: Assessing Progress and Looking to the Future , 2013, Journal of Risk Management in Financial Institutions.

[14]  Thierry Roncalli,et al.  Regularization of Portfolio Allocation , 2013 .

[15]  Mark D. Flood,et al.  Systematic Scenario Selection , 2013 .

[16]  Gareth M. James,et al.  Penalized and Constrained Regression , 2013 .

[17]  Jin-Chuan Duan,et al.  A public good approach to credit ratings – From concept to reality , 2012 .

[18]  Paul Glasserman,et al.  Stress scenario selection by empirical likelihood , 2012 .

[19]  Klaus Rheinberger,et al.  How to Find Plausible, Severe and Useful Stress Scenarios , 2012 .

[20]  Ameet Talwalkar,et al.  Foundations of Machine Learning , 2012, Adaptive computation and machine learning.

[21]  A. Kock,et al.  Oracle Inequalities for High Dimensional Vector Autoregressions , 2012, 1311.0811.

[22]  Tao Wang,et al.  Multiperiod Corporate Default Prediction - A Forward Intensity Approach , 2012 .

[23]  Ke Yu,et al.  Constraints , 2019, Sexual Selection.

[24]  Claudio Borio,et al.  Stress-Testing Macro Stress Testing: Does it Live Up to Expectations? , 2012 .

[25]  J. Duana,et al.  Stress Testing with a Bottom-Up Corporate Default Prediction Model , 2012 .

[26]  Lei Qi,et al.  Sparse High Dimensional Models in Economics. , 2011, Annual review of economics.

[27]  F. Nogales,et al.  Size Matters: Optimal Calibration of Shrinkage Estimators for Portfolio Selection , 2011 .

[28]  P. Bickel,et al.  Large Vector Auto Regressions , 2011, 1106.3915.

[29]  P. Jakubik,et al.  Thoughts on the proper design of macro stress tests , 2011 .

[30]  Shohei Tateishi,et al.  Nonlinear regression modeling via the lasso-type regularization , 2010 .

[31]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[32]  V. Perederiy Bankruptcy Prediction Revisited: Non-Traditional Ratios and Lasso Selection , 2009 .

[33]  I. Daubechies,et al.  Sparse and stable Markowitz portfolios , 2007, Proceedings of the National Academy of Sciences.

[34]  Nils Lid Hjort,et al.  Model Selection and Model Averaging: Contents , 2008 .

[35]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.

[36]  C. De Mol,et al.  Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components? , 2006, SSRN Electronic Journal.

[37]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[38]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[39]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[40]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[41]  Bernd Scherer,et al.  Portfolio Construction and Risk Budgeting , 2002 .

[42]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[43]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[44]  Mark Broadie,et al.  Computing efficient frontiers using estimated parameters , 1993, Ann. Oper. Res..

[45]  A. Atkinson Subset Selection in Regression , 1992 .

[46]  Philippe Jorion,et al.  Portfolio Optimization in Practice , 1992 .

[47]  Arthur E. Hoerl,et al.  Application of ridge analysis to regression problems , 1962 .

[48]  Designing Macroeconomic Scenarios for Stress-Testing Designing Macroeconomic Scenarios for Stress-Testing , 2022 .