Morse Set Classification and Hierarchical Refinement Using Conley Index

Morse decomposition provides a numerically stable topological representation of vector fields that is crucial for their rigorous interpretation. However, Morse decomposition is not unique, and its granularity directly impacts its computational cost. In this paper, we propose an automatic refinement scheme to construct the Morse Connection Graph (MCG) of a given vector field in a hierarchical fashion. Our framework allows a Morse set to be refined through a local update of the flow combinatorialization graph, as well as the connection regions between Morse sets. The computation is fast because the most expensive computation is concentrated on a small portion of the domain. Furthermore, the present work allows the generation of a topologically consistent hierarchy of MCGs, which cannot be obtained using a global method. The classification of the extracted Morse sets is a crucial step for the construction of the MCG, for which the Poincaré index is inadequate. We make use of an upper bound for the Conley index, provided by the Betti numbers of an index pair for a translation along the flow, to classify the Morse sets. This upper bound is sufficiently accurate for Morse set classification and provides supportive information for the automatic refinement process. An improved visualization technique for MCG is developed to incorporate the Conley indices. Finally, we apply the proposed techniques to a number of synthetic and real-world simulation data to demonstrate their utility.

[1]  M. Mrozek Leray functor and cohomological Conley index for discrete dynamical systems , 1990 .

[2]  Andrzej Syzmczak Index pairs :from dynamics to combinatorics and back , 1999 .

[3]  Christian Rössl,et al.  Compression of 2D Vector Fields Under Guaranteed Topology Preservation , 2003, Comput. Graph. Forum.

[4]  Konrad Polthier,et al.  Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.

[5]  Konstantin Mischaikow,et al.  Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition , 2007, IEEE Transactions on Visualization and Computer Graphics.

[6]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[7]  Konstantin Mischaikow,et al.  Efficient Morse Decompositions of Vector Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.

[8]  M. Postnikov Lectures in algebraic topology , 1983 .

[9]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[10]  Ingrid Hotz,et al.  Fast Combinatorial Vector Field Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.

[11]  Hans Hagen,et al.  Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.

[12]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[13]  Robert van Liere,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999, VisSym.

[14]  Christian Rössl,et al.  Combining topological simplification and topology preserving compression for 2D vector fields , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[15]  Herbert Edelsbrunner,et al.  Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.

[16]  Hans-Peter Seidel,et al.  Grid-independent Detection of Closed Stream Lines in 2D Vector Fields , 2004, VMV.

[17]  Bernd Hamann,et al.  Efficient Computation of Morse-Smale Complexes for Three-dimensional Scalar Functions , 2007, IEEE Transactions on Visualization and Computer Graphics.

[18]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..

[19]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[20]  Konstantin Mischaikow,et al.  An Algorithmic Approach to Chain Recurrence , 2005, Found. Comput. Math..

[21]  W. D. Leeuw,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999 .

[22]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..

[23]  Gerik Scheuermann,et al.  Locating Closed Streamlines in 3D Vector Fields , 2002, VisSym.

[24]  Robert van Liere,et al.  Multi-level topology for flow visualization , 2000, Comput. Graph..

[25]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[26]  Hans Hagen,et al.  Visual analysis and exploration of fluid flow in a cooling jacket , 2005, VIS 05. IEEE Visualization, 2005..

[27]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[28]  Hans Hagen,et al.  Tracking Closed Streamlines in Time Dependent Planar Flows , 2001, VMV.

[29]  Hans Hagen,et al.  Visualization of higher order singularities in vector fields , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[30]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[31]  Bernd Hamann,et al.  A Practical Approach to Morse-Smale Complex Computation: Scalability and Generality , 2008, IEEE Transactions on Visualization and Computer Graphics.

[32]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[33]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes , 1993, SCG '93.

[34]  M. Mrozek Index pairs and the fixed point index for semidynamical systems with discrete time , 1989 .

[35]  Eugene Zhang,et al.  Robust Morse Decompositions of Piecewise Constant Vector Fields , 2012, IEEE Transactions on Visualization and Computer Graphics.

[36]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[37]  Robert S. Laramee,et al.  The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.

[38]  R. Forman Combinatorial vector fields and dynamical systems , 1998 .

[39]  D. Weiskopf,et al.  Investigating swirl and tumble flow with a comparison of visualization techniques , 2004, IEEE Visualization 2004.

[40]  Hans Hagen,et al.  Extraction and Visualization of Swirl and Tumble Motion from Engine Simulation Data , 2007, Topology-based Methods in Visualization.

[41]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[42]  坂上 貴之 書評 Computational Homology , 2005 .

[43]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..