Morse Set Classification and Hierarchical Refinement Using Conley Index
暂无分享,去创建一个
Robert S. Laramee | Eugene Zhang | Guoning Chen | Andrzej Szymczak | Qingqing Deng | A. Szymczak | R. Laramee | E. Zhang | Qingqing Deng | Guoning Chen
[1] M. Mrozek. Leray functor and cohomological Conley index for discrete dynamical systems , 1990 .
[2] Andrzej Syzmczak. Index pairs :from dynamics to combinatorics and back , 1999 .
[3] Christian Rössl,et al. Compression of 2D Vector Fields Under Guaranteed Topology Preservation , 2003, Comput. Graph. Forum.
[4] Konrad Polthier,et al. Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.
[5] Konstantin Mischaikow,et al. Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition , 2007, IEEE Transactions on Visualization and Computer Graphics.
[6] Robert van Liere,et al. Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).
[7] Konstantin Mischaikow,et al. Efficient Morse Decompositions of Vector Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.
[8] M. Postnikov. Lectures in algebraic topology , 1983 .
[9] Konstantin Mischaikow,et al. Vector field design on surfaces , 2006, TOGS.
[10] Ingrid Hotz,et al. Fast Combinatorial Vector Field Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.
[11] Hans Hagen,et al. Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.
[12] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[13] Robert van Liere,et al. Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999, VisSym.
[14] Christian Rössl,et al. Combining topological simplification and topology preserving compression for 2D vector fields , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..
[15] Herbert Edelsbrunner,et al. Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.
[16] Hans-Peter Seidel,et al. Grid-independent Detection of Closed Stream Lines in 2D Vector Fields , 2004, VMV.
[17] Bernd Hamann,et al. Efficient Computation of Morse-Smale Complexes for Three-dimensional Scalar Functions , 2007, IEEE Transactions on Visualization and Computer Graphics.
[18] Gerik Scheuermann,et al. Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..
[19] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[20] Konstantin Mischaikow,et al. An Algorithmic Approach to Chain Recurrence , 2005, Found. Comput. Math..
[21] W. D. Leeuw,et al. Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999 .
[22] Gerik Scheuermann,et al. Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..
[23] Gerik Scheuermann,et al. Locating Closed Streamlines in 3D Vector Fields , 2002, VisSym.
[24] Robert van Liere,et al. Multi-level topology for flow visualization , 2000, Comput. Graph..
[25] Valerio Pascucci,et al. Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.
[26] Hans Hagen,et al. Visual analysis and exploration of fluid flow in a cooling jacket , 2005, VIS 05. IEEE Visualization, 2005..
[27] Lambertus Hesselink,et al. Representation and display of vector field topology in fluid flow data sets , 1989, Computer.
[28] Hans Hagen,et al. Tracking Closed Streamlines in Time Dependent Planar Flows , 2001, VMV.
[29] Hans Hagen,et al. Visualization of higher order singularities in vector fields , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[30] C. Conley. Isolated Invariant Sets and the Morse Index , 1978 .
[31] Bernd Hamann,et al. A Practical Approach to Morse-Smale Complex Computation: Scalability and Generality , 2008, IEEE Transactions on Visualization and Computer Graphics.
[32] Robert S. Laramee,et al. The State of the Art , 2015 .
[33] Herbert Edelsbrunner,et al. An incremental algorithm for Betti numbers of simplicial complexes , 1993, SCG '93.
[34] M. Mrozek. Index pairs and the fixed point index for semidynamical systems with discrete time , 1989 .
[35] Eugene Zhang,et al. Robust Morse Decompositions of Piecewise Constant Vector Fields , 2012, IEEE Transactions on Visualization and Computer Graphics.
[36] Santiago V. Lombeyda,et al. Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..
[37] Robert S. Laramee,et al. The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.
[38] R. Forman. Combinatorial vector fields and dynamical systems , 1998 .
[39] D. Weiskopf,et al. Investigating swirl and tumble flow with a comparison of visualization techniques , 2004, IEEE Visualization 2004.
[40] Hans Hagen,et al. Extraction and Visualization of Swirl and Tumble Motion from Engine Simulation Data , 2007, Topology-based Methods in Visualization.
[41] Hans Hagen,et al. A topology simplification method for 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).
[42] 坂上 貴之. 書評 Computational Homology , 2005 .
[43] Hans Hagen,et al. Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..