Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury.

[1]  J. Jonas,et al.  Intravitreal triamcinolone acetonide, retinal microglia and retinal ganglion cell apoptosis in the optic nerve crush model , 2016, Acta ophthalmologica.

[2]  J. Jonas,et al.  Retinal Microglia in Glaucoma , 2016, Journal of glaucoma.

[3]  Paloma Sobrado-Calvo,et al.  Long-Term Effect of Optic Nerve Axotomy on the Retinal Ganglion Cell Layer. , 2015, Investigative ophthalmology & visual science.

[4]  R. Cunha,et al.  Different danger signals differently impact on microglial proliferation through alterations of ATP release and extracellular metabolism , 2015, Glia.

[5]  M. Castelo‐Branco,et al.  Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro , 2015, ASN neuro.

[6]  R. Cunha,et al.  Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure , 2015, Journal of Neuroinflammation.

[7]  M. Vetter,et al.  Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma , 2015, Disease Models & Mechanisms.

[8]  A. Ambrósio,et al.  Contribution of Microglia-Mediated Neuroinflammation to Retinal Degenerative Diseases , 2015, Mediators of inflammation.

[9]  J. Relvas,et al.  c‐Src function is necessary and sufficient for triggering microglial cell activation , 2015, Glia.

[10]  T. Langmann,et al.  Retinal microglia: Just bystander or target for therapy? , 2015, Progress in Retinal and Eye Research.

[11]  C. Zelinka,et al.  Reactive retinal microglia, neuronal survival, and the formation of retinal folds and detachments , 2015, Glia.

[12]  V. Sheffield,et al.  Mechanosensitive release of adenosine 5′‐triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: A mechanism for purinergic involvement in chronic strain , 2014, Glia.

[13]  Rosa M. Ferrer-Martín,et al.  Expression of Inducible Nitric Oxide Synthase (iNOS) in Microglia of the Developing Quail Retina , 2014, PloS one.

[14]  J. Salazar,et al.  Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers , 2014, Journal of Neuroinflammation.

[15]  R. Cunha,et al.  Role of Microglia Adenosine A2A Receptors in Retinal and Brain Neurodegenerative Diseases , 2014, Mediators of inflammation.

[16]  Y. Smith,et al.  Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson's disease , 2014, Neurobiology of Disease.

[17]  J. Lanciego,et al.  Neuroprotective potential of adenosine A2A and cannabinoid CB1 receptor antagonists in an animal model of Parkinson disease. , 2014, Journal of neuropathology and experimental neurology.

[18]  J. Salazar,et al.  Rod-Like Microglia Are Restricted to Eyes with Laser-Induced Ocular Hypertension but Absent from the Microglial Changes in the Contralateral Untreated Eye , 2013, PloS one.

[19]  A. Barber,et al.  Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury , 2013, Journal of Neuroinflammation.

[20]  J. Gaspar,et al.  Tauroursodeoxycholic acid protects retinal neural cells from cell death induced by prolonged exposure to elevated glucose , 2013, Neuroscience.

[21]  J. Gonzales,et al.  Potential role of A2A adenosine receptor in traumatic optic neuropathy , 2013, Journal of Neuroimmunology.

[22]  R. Cunha,et al.  Caffeine and adenosine A2A receptor inactivation decrease striatal neuropathology in a lentiviral‐based model of Machado–Joseph disease , 2013, Annals of neurology.

[23]  N. Pfeiffer,et al.  Enhanced Insight into the Autoimmune Component of Glaucoma: IgG Autoantibody Accumulation and Pro-Inflammatory Conditions in Human Glaucomatous Retina , 2013, PloS one.

[24]  Marcos L. Aranda,et al.  Post-ischemic environmental enrichment protects the retina from ischemic damage in adult rats , 2013, Experimental Neurology.

[25]  V. Perry,et al.  Review: Activation patterns of microglia and their identification in the human brain , 2013, Neuropathology and applied neurobiology.

[26]  M. Vidal-Sanz,et al.  Whole Number, Distribution and Co-Expression of Brn3 Transcription Factors in Retinal Ganglion Cells of Adult Albino and Pigmented Rats , 2012, PloS one.

[27]  P. Horner,et al.  Early Reduction of Microglia Activation by Irradiation in a Model of Chronic Glaucoma , 2012, PloS one.

[28]  Â. R. Tomé,et al.  Blockade of adenosine A2A receptors prevents interleukin-1β-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway , 2012, Journal of Neuroinflammation.

[29]  J. Salazar,et al.  IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma , 2012, Journal of Neuroinflammation.

[30]  P. Agostinho,et al.  Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes , 2012, Glia.

[31]  J. Crowston,et al.  Definition of glaucoma: clinical and experimental concepts , 2012, Clinical & experimental ophthalmology.

[32]  J. Goldberg,et al.  Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. , 2012, Ophthalmology.

[33]  Joan W. Miller,et al.  Etanercept, a Widely Used Inhibitor of Tumor Necrosis Factor-α (TNF- α), Prevents Retinal Ganglion Cell Loss in a Rat Model of Glaucoma , 2012, PloS one.

[34]  Jing Zhang,et al.  Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease , 2011, Molecular Neurodegeneration.

[35]  C. Luu,et al.  Retinal ganglion cell death is induced by microglia derived pro‐inflammatory cytokines in the hypoxic neonatal retina , 2011, The Journal of pathology.

[36]  Catarina Gomes,et al.  Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. , 2011, Biochimica et biophysica acta.

[37]  M. Lynch,et al.  Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction , 2011, Journal of neurochemistry.

[38]  H. Kettenmann,et al.  Physiology of microglia. , 2011, Physiological reviews.

[39]  Yuan-Guo Zhou,et al.  Adenosine 2A receptor: a crucial neuromodulator with bidirectional effect in neuroinflammation and brain injury , 2011, Reviews in the neurosciences.

[40]  C. Crosson,et al.  Opioid receptor activation: suppression of ischemia/reperfusion-induced production of TNF-α in the retina. , 2011, Investigative ophthalmology & visual science.

[41]  B. Fredholm,et al.  International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update , 2011, Pharmacological Reviews.

[42]  M. Vetter,et al.  Early microglia activation in a mouse model of chronic glaucoma , 2011, The Journal of comparative neurology.

[43]  Bodil Gesslein,et al.  Tumor necrosis factor and its receptors in the neuroretina and retinal vasculature after ischemia-reperfusion injury in the pig retina , 2010, Molecular vision.

[44]  J. Salazar,et al.  Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. , 2010, Investigative ophthalmology & visual science.

[45]  T. Bisogno,et al.  Cannabinoid receptors and endocannabinoids: role in neuroinflammatory and neurodegenerative disorders. , 2010, CNS & neurological disorders drug targets.

[46]  T. Langmann,et al.  Microglia in the healthy and degenerating retina: insights from novel mouse models. , 2010, Immunobiology.

[47]  Danyi Wang,et al.  Mechanisms of retinal ganglion cell injury and defense in glaucoma. , 2010, Experimental eye research.

[48]  Yan Zhao,et al.  Local Glutamate Level Dictates Adenosine A2A Receptor Regulation of Neuroinflammation and Traumatic Brain Injury , 2010, The Journal of Neuroscience.

[49]  O. Gavet,et al.  Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. , 2010, Developmental cell.

[50]  S. Traynelis,et al.  Differential regulation of microglial motility by ATP/ADP and adenosine. , 2009, Parkinsonism & related disorders.

[51]  R. Cunha,et al.  Adenosine A2A Receptor Blockade Prevents Synaptotoxicity and Memory Dysfunction Caused by β-Amyloid Peptides via p38 Mitogen-Activated Protein Kinase Pathway , 2009, The Journal of Neuroscience.

[52]  W. Kamphuis,et al.  Diabetes changes the levels of ionotropic glutamate receptors in the rat retina , 2009, Molecular vision.

[53]  M. Vidal-Sanz,et al.  Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. , 2009, Investigative ophthalmology & visual science.

[54]  Rohit Saxena,et al.  Current concepts in the pathophysiology of glaucoma , 2009, Indian journal of ophthalmology.

[55]  V. Shestopalov,et al.  Inactivation of astroglial NF‐κB promotes survival of retinal neurons following ischemic injury , 2009, The European journal of neuroscience.

[56]  J. Morrison,et al.  Friend or foe? Resolving the impact of glial responses in glaucoma. , 2009, Journal of glaucoma.

[57]  R. Gross,et al.  Adenosine A2A receptor mediates microglial process retraction , 2009, Nature Neuroscience.

[58]  Y. Khalifa,et al.  Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. , 2008, Investigative ophthalmology & visual science.

[59]  Wai T Wong,et al.  Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. , 2008, Investigative ophthalmology & visual science.

[60]  David J. Calkins,et al.  Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. , 2008, Investigative ophthalmology & visual science.

[61]  C. Müller,et al.  Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms , 2008, Annals of neurology.

[62]  B. Fredholm,et al.  Modulation of glial cell functions by adenosine receptors , 2007, Physiology & Behavior.

[63]  W. Behan,et al.  Interleukin‐1β but not tumor necrosis factor‐α potentiates neuronal damage by quinolinic acid: Protection by an adenosine A2A receptor antagonist , 2007 .

[64]  A. Ambrósio,et al.  High glucose induces caspase-independent cell death in retinal neural cells , 2007, Neurobiology of Disease.

[65]  A. Barber,et al.  Elevated glucose changes the expression of ionotropic glutamate receptor subunits and impairs calcium homeostasis in retinal neural cells. , 2006, Investigative ophthalmology & visual science.

[66]  David J. Calkins,et al.  Pressure-induced regulation of IL-6 in retinal glial cells: involvement of the ubiquitin/proteasome pathway and NFkappaB. , 2006, Investigative ophthalmology & visual science.

[67]  K. Pahan,et al.  Up-regulation of Microglial CD11b Expression by Nitric Oxide* , 2006, Journal of Biological Chemistry.

[68]  M. R. Powers,et al.  Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. , 2006, Molecular vision.

[69]  N. Nakahata,et al.  Adenosine A2A receptor mediated protective effect of 2-(6-cyano-1-hexyn-1-yl)adenosine on retinal ischaemia/reperfusion damage in rats , 2006, British Journal of Ophthalmology.

[70]  C. Zhang,et al.  Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury. , 2005, Experimental eye research.

[71]  R. Moratalla,et al.  Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia , 2005, Journal of neurochemistry.

[72]  M. Block,et al.  Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism , 2005, Progress in Neurobiology.

[73]  R. Cunha,et al.  Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade , 2005, Purinergic Signalling.

[74]  Claus Lindbjerg Andersen,et al.  Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets , 2004, Cancer Research.

[75]  J. Serratosa,et al.  High‐yield isolation of murine microglia by mild trypsinization , 2003, Glia.

[76]  Sucharita Das,et al.  Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. , 2002, Experimental eye research.

[77]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[78]  K. Kataoka,et al.  Lipopolysaccharide-induced microglial activation in culture: temporal profiles of morphological change and release of cytokines and nitric oxide , 1999, Neuroscience Research.

[79]  M. Moskowitz,et al.  A2A Adenosine Receptor Deficiency Attenuates Brain Injury Induced by Transient Focal Ischemia in Mice , 1999, The Journal of Neuroscience.

[80]  T. Stone,et al.  Protection against kainate-induced excitotoxicity by adenosine A2A receptor agonists and antagonists , 1998, Neuroscience.

[81]  B. Fredholm,et al.  Localization of adenosine receptor messenger RNAs in the rat eye. , 1997, Experimental eye research.

[82]  S. Thanos,et al.  The Relationship of Microglial Cells to Dying Neurons During Natural Neuronal Cell Death and Axotomy‐induced Degeneration of the Rat Retina , 1991, The European journal of neuroscience.

[83]  C. Cavadas,et al.  Neuropeptide Y receptors Y1 and Y2 are present in neurons and glial cells in rat retinal cells in culture. , 2013, Investigative ophthalmology & visual science.

[84]  P. Agostinho,et al.  Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. , 2012, Journal of Alzheimer's disease : JAD.

[85]  M. Blackburn,et al.  Adenosine receptors and inflammation. , 2009, Handbook of experimental pharmacology.