Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders

[1]  Michael F. Green,et al.  Mapping genomic loci implicates genes and synaptic biology in schizophrenia , 2022, Nature.

[2]  Mark D. Robinson,et al.  Doublet identification in single-cell sequencing data using scDblFinder , 2021, F1000Research.

[3]  M. Robinson,et al.  SampleQC: robust multivariate, multi-cell type, multi-sample quality control for single-cell data , 2021, bioRxiv.

[4]  Tom R. Gaunt,et al.  Brain expression quantitative trait locus and network 1 analysis reveals downstream effects and putative 2 drivers for brain-related diseases , 2021 .

[5]  Daniel J. Gaffney,et al.  Genome-wide meta-analysis, fine-mapping, and integrative prioritization implicate new Alzheimer’s disease risk genes , 2021, Nature Genetics.

[6]  Benjamin A. Logsdon,et al.  Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis , 2021, Nature Genetics.

[7]  Howard Y. Chang,et al.  Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution , 2020, Cell.

[8]  Daniel J. Gaffney,et al.  Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation , 2020, Nature Genetics.

[9]  Daniel J. Gaffney,et al.  A map of transcriptional heterogeneity and regulatory variation in human microglia , 2019, Nature Genetics.

[10]  Charles C. White,et al.  Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease , 2020, bioRxiv.

[11]  P. Edison,et al.  Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? , 2020, Nature Reviews Neurology.

[12]  R. Kahn,et al.  Atlas of genetic effects in human microglia transcriptome across brain regions, aging and disease pathologies , 2020, bioRxiv.

[13]  A. Goate,et al.  Microglial Phagocytosis: A Disease-Associated Process Emerging from Alzheimer’s Disease Genetics , 2020, Trends in Neurosciences.

[14]  Howard Y. Chang,et al.  Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases , 2020, Nature Genetics.

[15]  Blaine R. Roberts,et al.  Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture , 2020, Nature Communications.

[16]  Dai Zhang,et al.  Independent replications and integrative analyses confirm TRANK1 as a susceptibility gene for bipolar disorder , 2020, Neuropsychopharmacology.

[17]  Grace E. Lidgerwood,et al.  Single cell eQTL analysis identifies cell type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells , 2020, bioRxiv.

[18]  Mitchell J. Machiela,et al.  LDlinkR: An R Package for Rapidly Calculating Linkage Disequilibrium Statistics in Diverse Populations , 2020, Frontiers in Genetics.

[19]  D. Holtzman,et al.  Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease , 2020, Nature Medicine.

[20]  L. Mei,et al.  CUL3 Deficiency Causes Social Deficits and Anxiety-like Behaviors by Impairing Excitation-Inhibition Balance through the Promotion of Cap-Dependent Translation , 2019, Neuron.

[21]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[22]  Sonja W. Scholz,et al.  Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies , 2019, The Lancet Neurology.

[23]  James B. Brewer,et al.  Brain cell type–specific enhancer–promoter interactome maps and disease-risk association , 2019, Science.

[24]  D. Loew,et al.  Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory Synapse Formation in Cortical Pyramidal Neurons , 2019, Neuron.

[25]  Simon C. Potter,et al.  Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility , 2019, Science.

[26]  M. Cuajungco,et al.  Transmembrane 163 (TMEM163) protein effluxes zinc , 2019, bioRxiv.

[27]  Samuel Demharter,et al.  Joint analysis of heterogeneous single-cell RNA-seq dataset collections , 2019, Nature Methods.

[28]  Manolis Kellis,et al.  Single-cell transcriptomic analysis of Alzheimer’s disease , 2019, Nature.

[29]  Stephan J Sanders,et al.  Whole-Genome and RNA Sequencing Reveal Variation and Transcriptomic Coordination in the Developing Human Prefrontal Cortex , 2019, bioRxiv.

[30]  Samantha Riesenfeld,et al.  EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data , 2019, Genome Biology.

[31]  Gerome Breen,et al.  Genetic identification of brain cell types underlying schizophrenia , 2017, Nature Genetics.

[32]  O. Isacson,et al.  The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson's disease patients and increases after lysosomal stress , 2018, Neurobiology of Disease.

[33]  J. Wiltfang,et al.  The metalloprotease ADAMTS4 generates N-truncated Aβ4–x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer’s disease , 2018, Acta Neuropathologica.

[34]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[35]  J. Greenbaum,et al.  Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression , 2018, Cell.

[36]  Y. Hurd,et al.  An atlas of chromatin accessibility in the adult human brain , 2018, Genome research.

[37]  D. Stephan,et al.  An APOE-independent cis-eSNP on chromosome 19q13.32 influences tau levels and late-onset Alzheimer's disease risk , 2018, Neurobiology of Aging.

[38]  Sina A. Gharib,et al.  Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood , 2018, Nature Communications.

[39]  Hans-Ulrich Klein,et al.  A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research , 2018, Scientific Data.

[40]  Casper W. Berg,et al.  glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling , 2017, R J..

[41]  Stylianos E. Antonarakis,et al.  MBV: a method to solve sample mislabeling and detect technical bias in large combined genotype and sequencing assay datasets , 2017, Bioinform..

[42]  Sunil Kumar,et al.  SNP2TFBS – a database of regulatory SNPs affecting predicted transcription factor binding site affinity , 2016, Nucleic Acids Res..

[43]  T. Spector,et al.  Predicting causal variants affecting expression by using whole-genome sequencing and RNA-seq from multiple human tissues , 2017, Nature Genetics.

[44]  Olivier Delaneau,et al.  A complete tool set for molecular QTL discovery and analysis , 2016, Nature Communications.

[45]  D. Leshkowitz,et al.  Induction of the type I interferon response in neurological forms of Gaucher disease , 2016, Journal of Neuroinflammation.

[46]  Benjamin A. Logsdon,et al.  Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia , 2016, Nature Neuroscience.

[47]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[48]  S. Knapp,et al.  Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3)* , 2015, The Journal of Biological Chemistry.

[49]  Emmanouil T. Dermitzakis,et al.  Fast and efficient QTL mapper for thousands of molecular phenotypes , 2015, bioRxiv.

[50]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[51]  Chuong B. Do,et al.  Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease , 2014, Nature Genetics.

[52]  O. Brady,et al.  Regulated Intramembrane Proteolysis of the Frontotemporal Lobar Degeneration Risk Factor, TMEM106B, by Signal Peptide Peptidase-like 2a (SPPL2a)* , 2014, The Journal of Biological Chemistry.

[53]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[54]  A. Dunning,et al.  Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.

[55]  R. D'Hooge,et al.  Postnatal Disruption of the Disintegrin/Metalloproteinase ADAM10 in Brain Causes Epileptic Seizures, Learning Deficits, Altered Spine Morphology, and Defective Synaptic Functions , 2013, The Journal of Neuroscience.

[56]  P. Gregersen,et al.  Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway , 2013, PLoS genetics.

[57]  A. Basu,et al.  Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation , 2010, Journal of Neuroinflammation.

[58]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[59]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[60]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[61]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[62]  G. Mandel,et al.  REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis , 2005, Cell.

[63]  M. Farrer,et al.  Linkage disequilibrium and association of MAPT H1 in Parkinson disease. , 2004, American journal of human genetics.

[64]  C. Walsh,et al.  Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome , 2004, Nature Genetics.

[65]  Y. Araki,et al.  RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway , 2003, Journal of Cell Science.

[66]  S. Dowler,et al.  Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. , 2000, The Biochemical journal.

[67]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .