Lattice‐Symmetry‐Driven Epitaxy of Hierarchical GaN Nanotripods

This work was partly supported by the National Key Research and Development Program (Grant No. 2016YFB0400100), the National Basic Research Program of China (Grant No. 2013CB632800), the National Natural Science Foundation of China (Grant Nos. 61225019, 61376060, 61428401, and 61521004), the Science Challenge Project (Grant No. JCKY2016212A503), NSAF (Grant No. U1630109), the CAEP Microsystem and THz Science and Technology Foundation (Grant No. CAEPMT201507), and the Open Fund of the State Key Laboratory on Integrated Optoelectronics and King Abdullah University of Science and Technology. The authors are grateful to Prof. Weikun Ge and Dr. Jun Li for their critical reading and polishing of the manuscript.

[1]  Transmission electron microscopy of indium gallium nitride nanorods grown by molecular beam epitaxy , 2014 .

[2]  Lattice-Polarity-Driven Epitaxy of Hexagonal Semiconductor Nanowires. , 2016, Nano letters.

[3]  Chaoyang Lu,et al.  Single InAs quantum dot grown at the junction of branched gold-free GaAs nanowire. , 2013, Nano letters.

[4]  Growth by molecular beam epitaxy and properties of inclined GaN nanowires on Si(001) substrate. , 2014, Nanotechnology.

[5]  Hiroto Sekiguchi,et al.  Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate , 2010 .

[6]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[7]  G. Mugny,et al.  Three-dimensional multiple-order twinning of self-catalyzed GaAs nanowires on Si substrates. , 2011, Nano letters.

[8]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[9]  Nils Guenter Weimann,et al.  GaN nanotip pyramids formed by anisotropic etching , 2003 .

[10]  A novel logic switch based on individual ZnO nanotetrapods. , 2011, Nanoscale.

[11]  M. Stutzmann,et al.  Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy. , 2015, Nano letters.

[12]  Weiya Zhou,et al.  ZnO tetrapods designed as multiterminal sensors to distinguish false responses and increase sensitivity. , 2008, Nano letters.

[13]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[14]  M. Stutzmann,et al.  Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking , 2009, Nanotechnology.

[15]  Xiaodong Wang,et al.  Molecular beam epitaxy growth of GaN, AlN and InN , 2004 .

[16]  Yue Zhang,et al.  Transport Property Tuned by Gate Irradiation in ZnO Nanotetrapod Devices , 2012 .

[17]  Si Xiao,et al.  Surface functionalization of ZnO nanotetrapods with photoactive and electroactive organic monolayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[18]  P. Bhattacharya,et al.  Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire , 2013, Nature Communications.

[19]  M. Newton,et al.  ZnO tetrapod Schottky photodiodes , 2006 .

[20]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[21]  V. Zwiller,et al.  Crystal phase quantum dots. , 2010, Nano letters.

[22]  Stephen J. Pearton,et al.  Selective-hydrogen sensing at room temperature with Pt-coated InN nanobelts , 2008 .

[23]  Hao-Chung Kuo,et al.  Fabrication and luminescent properties of core-shell InGaN/GaN multiple quantum wells on GaN nanopillars , 2012 .

[24]  P. Bhattacharya,et al.  Structural and optical properties of disc-in-wire InGaN/GaN LEDs. , 2015, Nano letters.

[25]  Hyeyoung Ahn,et al.  Plasmonic green nanolaser based on a metal-oxide-semiconductor structure. , 2011, Nano letters.

[26]  Jonathan J. Wierer,et al.  III-nitride core–shell nanowire arrayed solar cells , 2012, Nanotechnology.

[27]  Zetian Mi,et al.  III-Nitride nanowire optoelectronics , 2015 .

[28]  Nakayama,et al.  Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.

[29]  Wei Chen,et al.  A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcination , 2009 .

[30]  M. Razeghi,et al.  Cubic Phase GaN on Nano‐grooved Si (100) via Maskless Selective Area Epitaxy , 2014 .

[31]  Lu,et al.  Zinc-blende-wurtzite polytypism in semiconductors. , 1992, Physical review. B, Condensed matter.

[32]  Z. Mi,et al.  Photoluminescence Properties of a Nearly Intrinsic Single InN Nanowire , 2010 .

[33]  K. Yoodee,et al.  Effect of growth temperature on polytype transition of GaN from zincblende to wurtzite , 2007 .

[34]  Measuring the transport property of ZnO tetrapod using in situ nanoprobes , 2010 .

[35]  Martin Strassburg,et al.  Polarity and Its Influence on Growth Mechanism during MOVPE Growth of GaN Sub-micrometer Rods , 2011 .

[36]  M. Eickhoff,et al.  Optical properties of wurtzite/zinc-blende heterostructures in GaN nanowires , 2011 .

[37]  Yue Zhang,et al.  Enhancing sensitivity of force sensor based on a ZnO tetrapod by piezo-phototronic effect , 2013 .

[38]  S. von Molnár,et al.  Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed GaAs nanowires. , 2012, Nano letters.

[39]  Qihua Xiong,et al.  Epitaxial II-VI tripod nanocrystals: a generalization of van der Waals epitaxy for nonplanar polytypic nanoarchitectures. , 2012, ACS nano.

[40]  V. Zwiller,et al.  Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot. , 2016, Nano letters.

[41]  Y. Arakawa,et al.  Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. , 2014, Nano letters.

[42]  S. Gwo,et al.  InGaN/GaN nanorod array white light-emitting diode , 2010 .

[43]  Yong‐Hoon Cho,et al.  Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk , 2013, Scientific Reports.

[44]  Lars Samuelson,et al.  Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events , 2004, Nature materials.