From the Hitchin section to opers through nonabelian Hodge
暂无分享,去创建一个
Rafe Mazzeo | Olivia Dumitrescu | Georgios Kydonakis | Andrew Neitzke | Laura Fredrickson | Motohico Mulase | R. Mazzeo | M. Mulase | A. Neitzke | Olivia Dumitrescu | Georgios Kydonakis | Laura Fredrickson | Andrew Neitzke
[1] N. Hitchin. LIE-GROUPS AND TEICHMULLER SPACE , 1992 .
[2] Никита Александрович Некрасов,et al. Координаты Дарбу, функционал Янга - Янга и калибровочная теория@@@Darboux coordinates, Yang - Yang functional, and gauge theory , 2014 .
[3] C. Simpson. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .
[4] E. Frenkel,et al. Vertex Algebras and Algebraic Curves , 2000, math/0007054.
[5] 河合 隆裕,et al. Algebraic analysis of singular perturbation theory , 2005 .
[6] Peter Dalakov. Higgs bundles and opers , 2008 .
[7] Kohei Iwaki,et al. Exact WKB analysis and cluster algebras , 2014, 1401.7094.
[8] N. Hitchin. THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .
[9] F. Labourie. Cyclic surfaces and Hitchin components in rank 2 , 2014, 1406.4637.
[10] G. Moore,et al. Spectral Networks , 2012, 1204.4824.
[11] G. Moore,et al. Wall-crossing, Hitchin Systems, and the WKB Approximation , 2009, 0907.3987.
[12] Kohei Iwaki,et al. Exact WKB analysis and cluster algebras II: Simple poles, orbifold points, and generalized cluster algebras , 2014, 1409.4641.
[13] R. Zucchini. The Drinfeld-Sokolov holomorphic bundle and classical W algebras on Riemann surfaces , 1994, hep-th/9403036.