High-performance computing of wind turbine aerodynamics using isogeometric analysis

Abstract In this article we present a high-performance computing framework for advanced flow simulation and its application to wind energy based on the residual-based variational multiscale (RBVMS) method and isogeometric analysis. The RBVMS formulation and its suitability and accuracy for turbulent flow in a moving domain are presented. Particular emphasis is placed on the parallel implementation of the methodology and its scalability. Two challenging flow cases were considered: the turbulent Taylor–Couette flow and the NREL 5 MW offshore baseline wind turbine rotor at full scale. In both cases, flow quantities of interest from the simulation results compare favorably with the reference data and near-perfect linear parallel scaling is achieved.

[1]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[2]  Arif Masud,et al.  A multiscale stabilized ALE formulation for incompressible flows with moving boundaries , 2010 .

[3]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[4]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[5]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[6]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[7]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[8]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[9]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[10]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[11]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[12]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[13]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of parachute clusters , 2011 .

[14]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[15]  Lakshmi N. Sankar,et al.  Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines Under Yawed Flow Conditions , 2005 .

[16]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[17]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[18]  D. Mavriplis,et al.  Unstructured Mesh CFD Aerodynamic Analysis of the NREL Phase VI Rotor , 2009 .

[19]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[20]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[21]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[22]  Onkar Sahni,et al.  Scalable implicit finite element solver for massively parallel processing with demonstration to 160K cores , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[23]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes , 2011 .

[24]  Niels N. Sørensen,et al.  Overset Grid Flow Simulation on a Modern Wind Turbine , 2008 .

[25]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[26]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[27]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[28]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[29]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[30]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[31]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[32]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[33]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[34]  F. Frey,et al.  Large deflections of laminated beams with interlayer slips: Part 1: model development , 2007 .

[35]  G. Houzeaux,et al.  A variational subgrid scale model for transient incompressible flows , 2008 .

[36]  Kenneth E. Jansen,et al.  Geometry based pre-processor for parallel fluid dynamic simulations using a hierarchical basis , 2008, Engineering with Computers.

[37]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[38]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[39]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[40]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[41]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[42]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[43]  Tetsuo Tomiyama,et al.  Reliability of wind turbine technology through time , 2008 .

[44]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[45]  Wolfgang A. Wall,et al.  Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow , 2010 .

[46]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[47]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[48]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[49]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[50]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[51]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[52]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[53]  Spyros G. Voutsinas,et al.  STATE OF THE ART IN WIND TURBINE AERODYNAMICS AND AEROELASTICITY , 2006 .

[54]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[55]  C. Kong,et al.  Structural investigation of composite wind turbine blade considering various load cases and fatigue life , 2005 .

[56]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[57]  Suchuan Dong,et al.  Direct numerical simulation of turbulent Taylor–Couette flow , 2007, Journal of Fluid Mechanics.

[58]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[59]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[60]  L. Long,et al.  3-D time-accurate CFD simulations of wind turbine rotor flow fields , 2006 .

[61]  Yongjie Zhang,et al.  Wavelets-based NURBS simplification and fairing , 2010 .

[62]  C. G. Speziale,et al.  On consistency conditions for rotating turbulent flows , 1998 .

[63]  Bruno Eckhardt,et al.  DNS of turbulent co- and counterrotating Taylor Couette flow up to Re=30,000 , 2012 .

[64]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[65]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[66]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[67]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .