Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy

We present a study of the optical properties of GaN/AlN and InGaN/GaN quantum dot (QD) superlattices grown via plasma-assisted molecular-beam epitaxy, as compared to their quantum well (QW) counterparts. The three-dimensional/two-dimensional nature of the structures has been verified using atomic force microscopy and transmission electron microscopy. The QD superlattices present higher internal quantum efficiency as compared to the respective QWs as a result of the three-dimensional carrier localization in the islands. In the QW samples, photoluminescence (PL) measurements point out a certain degree of carrier localization due to structural defects or thickness fluctuations, which is more pronounced in InGaN/GaN QWs due to alloy inhomogeneity. In the case of the QD stacks, carrier localization on potential fluctuations with a spatial extension smaller than the QD size is observed only for the InGaN QD-sample with the highest In content (peak emission around 2.76 eV). These results confirm the efficiency o...

[1]  Petr G. Eliseev,et al.  BLUE TEMPERATURE-INDUCED SHIFT AND BAND-TAIL EMISSION IN INGAN-BASED LIGHT SOURCES , 1997 .

[2]  J. Carlin,et al.  Stranski-Krastanov GaN∕AlN quantum dots grown by metal organic vapor phase epitaxy , 2006 .

[3]  Nicolas Grandjean,et al.  From visible to white light emission by GaN quantum dots on Si(111) substrate , 1999 .

[4]  Katherine L. Smith,et al.  Strong carrier confinement and negligible piezoelectric effect in InGaN/GaN quantum dots , 2008 .

[5]  G. Andrew D. Briggs,et al.  Growth modes in heteroepitaxy of InGaN on GaN , 2005 .

[6]  Heiko Bremers,et al.  Emission and recombination characteristics of Ga 1-x In x N/GaN quantum well structures with nonradiative recombination suppression by V-shaped pits , 2007 .

[7]  Phil Dawson,et al.  Determination of relative internal quantum efficiency in InGaN∕GaN quantum wells , 2005 .

[8]  P. Hinze,et al.  Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. , 2005, Physical review letters.

[9]  Pierre Gibart,et al.  TEMPERATURE QUENCHING OF PHOTOLUMINESCENCE INTENSITIES IN UNDOPED AND DOPED GAN , 1999 .

[10]  J. Massies,et al.  Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth , 1999 .

[11]  Guy Feuillet,et al.  Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN , 1997 .

[12]  Yasuhiko Arakawa,et al.  Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition , 1999 .

[13]  M. Minsky,et al.  Radiative and nonradiative lifetimes in GaInN/GaN multiquantum wells , 2002 .

[14]  Akio Sasaki,et al.  Radiative carrier recombination dependent on temperature and well width of InGaN/GaN single quantum well , 2004 .

[15]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .

[16]  Robert W. Martin,et al.  Origin of Luminescence from InGaN Diodes , 1999 .

[17]  Esther Baumann,et al.  GaN/AlN short-period superlattices for intersubband optoelectronics: A systematic study of their epitaxial growth, design, and performance , 2008 .

[18]  M. Scheffler,et al.  Adatom kinetics on and below the surface: the existence of a new diffusion channel. , 2003, Physical review letters.

[19]  O. Brandt,et al.  In surface segregation during growth of (In, Ga)N/GaN multiple quantum wells by plasma-assisted molecular beam epitaxy , 2002 .

[20]  Eva Monroy,et al.  Surfactant effect of In for AlGaN growth by plasma-assisted molecular beam epitaxy , 2003 .

[21]  Michael Wraback,et al.  Temperature dependence of energy gap in GaN thin film studied by thermomodulation , 1997 .

[22]  E. Monroy,et al.  Strain relaxation in short-period polar GaN/AlN superlattices , 2009 .

[23]  Umesh K. Mishra,et al.  “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .

[24]  P. Petroff,et al.  GaN quantum dot density control by rf-plasma molecular beam epitaxy , 2004 .

[25]  C. Adelmann,et al.  Self-assembled InGaN quantum dots grown by molecular-beam epitaxy , 2000 .

[26]  N. Gogneau,et al.  Comparison of the structural quality in Ga-face and N-face polarity GaN/AlN multiple-quantum-well structures , 2006 .

[27]  Nicolas Grandjean,et al.  In surface segregation in InGaN/GaN quantum wells , 2003 .

[28]  Katherine L. Smith,et al.  Strong carrier confinement in InxGa1-xN/GaN quantum dots grown by molecular beam epitaxy , 2007 .

[29]  J. Massies,et al.  Effects of GaAlN barriers and of dimensionality on optical recombination processes in InGaN quantum wells and quantum boxes , 2001 .

[30]  Francois H. Julien,et al.  Si-doped GaN∕AlN quantum dot superlattices for optoelectronics at telecommunication wavelengths , 2006 .

[31]  J. Falta,et al.  Formation and morphology of InGaN nanoislands on GaN(0001) , 2007 .

[32]  Y. Aoyagi,et al.  Anti-Surfactant in III-Nitride Epitaxy –Quantum Dot Formation and Dislocation Termination– , 2000 .

[33]  Eva Monroy,et al.  Suppression of nonradiative processes in long-lived polar GaN/AlN quantum dots , 2009 .

[34]  Shuji Nakamura,et al.  Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm , 1997 .

[35]  N. Gogneau,et al.  Influence of AlN overgrowth on structural properties of GaN quantum wells and quantum dots grown by plasma-assisted molecular beam epitaxy , 2004 .

[36]  R. Martin,et al.  Photoluminescence and phonon satellites of single InGaN∕GaN quantum wells with varying GaN cap thickness , 2006 .

[37]  H. Morkoc,et al.  Size dependence of carrier recombination efficiency in GaN quantum dots , 2005, IEEE Transactions on Nanotechnology.

[38]  F. Julien,et al.  Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells , 2006 .