Optimal self-dual codes over Z4

The optimal minimal Euclidean norm of self-dual codes over ℤ_4 is known through length 24; the purpose of the present note is to determine the optimal minimal Hamming and Lee weights in this range. In the process, we classify all Lee-optimal codes of length 18, 21, 23, and 24. In particular, we find a total of 13 inequivalent codes with the same symmetrized weight enumerator as the Hensel-lifted Golay code.

[1]  Masaaki Harada,et al.  Extremal double circulant Type II codes over Z4 and construction of 5-(24, 10, 36) designs , 1999, Discret. Math..

[2]  N. Sloane,et al.  The Shadow Theory of Modular and Unimodular Lattices , 1998, math/0207294.

[3]  N. J. A. Sloane,et al.  Self-Dual Codes over the Integers Modulo 4 , 1993, J. Comb. Theory, Ser. A.

[4]  Robin Chapman Higher Power Residue Codes , 1997 .

[5]  Vera Pless,et al.  All self-dual Z/sub 4/ codes of length 15 or less are known , 1997, Proceedings of IEEE International Symposium on Information Theory.

[6]  Philippe Gaborit Mass formulas for self-dual codes over Z4 and Fq+uFq rings , 1996, IEEE Trans. Inf. Theory.

[7]  Vera Pless,et al.  All Z4 Codes of Type II and Length 16 Are Known , 1997, J. Comb. Theory, Ser. A.

[8]  N. J. A. Sloane,et al.  A new upper bound on the minimal distance of self-dual codes , 1990, IEEE Trans. Inf. Theory.

[9]  Masaaki Harada,et al.  Construction of Extremal Type II Codes over ℤ4 , 1999, Des. Codes Cryptogr..

[10]  W. Cary Huffman,et al.  Decompositions and Extremal Type II Codes over Z4 , 1998, IEEE Trans. Inf. Theory.