Stability Conditions for Wave Simulation in 3-D Anisotropic Media with the Pseudospectral Method

Simulation of elastic wave propagation has important applications in many areas such as inverse problem and geophysical exploration. In this paper, stability conditions for wave simulation in 3-D anisotropic media with the pseudospectral method are investigated. They can be expressed explicitly by elasticity constants which are easy to be applied in computations. The 3-D wave simulation for two typical anisotropic media, transversely isotropic media and orthorhombic media, are carried out. The results demonstrate some satisfactory behaviors of the pseudospectral method.

[1]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[2]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[3]  Stefan Nilsson,et al.  Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation , 2007, SIAM J. Numer. Anal..

[4]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[5]  Dinghui Yang,et al.  Optimally Accurate Nearly Analytic Discrete Scheme for Wave-Field Simulation in 3D Anisotropic Media , 2007 .

[6]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[7]  John J. H. Miller On the Location of Zeros of Certain Classes of Polynomials with Applications to Numerical Analysis , 1971 .

[8]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[9]  R. M. Alford,et al.  ACCURACY OF FINITE‐DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION , 1974 .

[10]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions , 2009, SIAM J. Numer. Anal..

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Michael Schoenberg,et al.  Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth , 1997 .

[13]  R. G. Payton,et al.  Elastic Wave Propagation in Transversely Isotropic Media , 1983 .

[14]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[15]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[16]  E. Kanasewich,et al.  ELASTIC WAVE PROPAGATION IN TRANSVERSELY ISOTROPIC MEDIA USING FINITE DIFFERENCES1 , 1990 .

[17]  B. Fornberg The pseudospectral method: Comparisons with finite differences for the elastic wave equation , 1987 .

[18]  Patrick Joly,et al.  An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..

[19]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[20]  Géza Seriani,et al.  A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media , 1992 .

[21]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..

[22]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[23]  B. Fornberg On a Fourier method for the integration of hyperbolic equations , 1975 .

[24]  C. Sayers,et al.  Seismic traveltime analysis for azimuthally anisotropic media: Theory and experiment , 1997 .

[25]  Ilya Tsvankin,et al.  Anisotropic parameters and P-wave velocity for orthorhombic media , 1997 .

[26]  Bengt Fornberg,et al.  The pseudospectral method; accurate representation of interfaces in elastic wave calculations , 1988 .

[27]  Moshe Reshef,et al.  Three-dimensional elastic modeling by the Fourier method , 1988 .

[28]  Dinghui Yang,et al.  Finite-difference modelling in two-dimensional anisotropic media using a flux-corrected transport technique , 2002 .

[29]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[30]  K. R. Kelly,et al.  SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .

[31]  Jianfeng Zhang,et al.  Elastic wave modeling in fractured media with an explicit approach , 2005 .

[32]  Emmanuel Dormy,et al.  Numerical simulation of elastic wave propagation using a finite volume method , 1995 .

[33]  P. Stoffa,et al.  Finite‐difference modeling in transversely isotropic media , 1994 .

[34]  Heiner Igel,et al.  Anisotropic wave propagation through finite-difference grids , 1995 .

[35]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[36]  Dirk Gajewski,et al.  Computation of high-frequency seismic wavefields in 3-D laterally inhomogeneous anisotropic media , 1987 .