Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect

[1]  M. Zaletel,et al.  The gate-tunable strong and fragile topology of multilayer-graphene on a transition metal dichalcogenide , 2019, 1901.01294.

[2]  L. Levitov,et al.  Tunable quantum Hall edge conduction in bilayer graphene through spin-orbit interaction , 2018, Physical Review B.

[3]  S. Roche,et al.  Spin transport in graphene/transition metal dichalcogenide heterostructures. , 2018, Chemical Society reviews.

[4]  Kenji Watanabe,et al.  Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h-BN heterostructures , 2017, 1712.05678.

[5]  B. Wees,et al.  Spin transport in high-mobility graphene on WS2 substrate with electric-field tunable proximity spin-orbit interaction , 2017, 1711.10293.

[6]  Marius V. Costache,et al.  Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature , 2017, 1710.11568.

[7]  C. Mattevi,et al.  Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer WS_{2}. , 2017, Physical review letters.

[8]  Kenji Watanabe,et al.  Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2 , 2017, Nature Materials.

[9]  Kenji Watanabe,et al.  Observation of fractional Chern insulators in a van der Waals heterostructure , 2017, Science.

[10]  T. Taniguchi,et al.  Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level , 2016, Nature.

[11]  T. J. Lyon,et al.  Intrinsic spin-orbit coupling gap and the evidence of a topological state in graphene , 2017, 1709.05705.

[12]  B. V. van Wees,et al.  Large Proximity-Induced Spin Lifetime Anisotropy in Transition-Metal Dichalcogenide/Graphene Heterostructures , 2017, Nano letters.

[13]  Kenji Watanabe,et al.  Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures , 2017, 1707.03434.

[14]  Saroj P. Dash,et al.  Electrical gate control of spin current in van der Waals heterostructures at room temperature , 2017, Nature Communications.

[15]  Kenji Watanabe,et al.  Magnetotransport in heterostructures of transition metal dichalcogenides and graphene , 2017, 1706.07189.

[16]  J. Fabian,et al.  Proximity Effects in Bilayer Graphene on Monolayer WSe_{2}: Field-Effect Spin Valley Locking, Spin-Orbit Valve, and Spin Transistor. , 2017, Physical review letters.

[17]  R. Ashoori,et al.  Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene , 2016, Nature Communications.

[18]  Kenji Watanabe,et al.  Robust fractional quantum Hall states and continuous quantum phase transitions in a half-filled bilayer graphene Landau level , 2017 .

[19]  M. Bockrath,et al.  Tunable spin–orbit coupling and symmetry-protected edge states in graphene/WS2 , 2016, 1607.04647.

[20]  A. Morpurgo,et al.  Origin and magnitude of 'designer' spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides , 2016, 1606.01789.

[21]  J. Fabian,et al.  Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides , 2015, 1510.00166.

[22]  A. Morpurgo,et al.  Strong interface-induced spin–orbit interaction in graphene on WS2 , 2015, Nature Communications.

[23]  J. Fabian,et al.  Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics , 2015, 1506.08954.

[24]  Wenhao Yu,et al.  Supplementary material , 2015 .

[25]  Spin-orbit proximity effect in graphene. , 2014, Nature communications.

[26]  Jeil Jung,et al.  Accurate tight-binding models for the π bands of bilayer graphene , 2013, 1309.5429.

[27]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[28]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[29]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[30]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[31]  Zhong Fang,et al.  Spin-orbit gap of graphene: First-principles calculations , 2007 .

[32]  F. Guinea,et al.  Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps , 2006, cond-mat/0606580.

[33]  J. E. Hill,et al.  Intrinsic and Rashba spin-orbit interactions in graphene sheets , 2006, cond-mat/0606504.

[34]  V. Fal’ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2005, Physical review letters.

[35]  C. Kane,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[36]  West,et al.  Single-electron capacitance spectroscopy of discrete quantum levels. , 1992, Physical review letters.