Color edge detection using the minimal spanning tree

In this study, the edge detection task in vector-valued images is examined as a clustering problem. Using samples within a data window, the minimal spanning tree (MST) provides the ordering of multivariate observations and facilitates the identification of similar classes. The edge detector parameters like edge strength, type and orientation are subsequently determined from the clustered data. Experiments and comparisons are performed, revealing the enhanced performance of the proposed approach.

[1]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[2]  Jussi Parkkinen,et al.  Edge detection in multispectral images using the self-organizing map , 2003, Pattern Recognit. Lett..

[3]  J. Astola,et al.  Vector median filters , 1990, Proc. IEEE.

[4]  Carlo Tomasi,et al.  Edge, Junction, and Corner Detection Using Color Distributions , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Panos E. Trahanias,et al.  Color edge detection using vector order statistics , 1993, IEEE Trans. Image Process..