The “Psychic” Neuron of the Cerebral Cortex

ABSTRACT: Remarkable advances in the identification, cloning, and localization of ion channels and receptors in the central nervous system have opened up unprecedented possibilities for relating structure to physiological function at the subcellular level of analysis. A singularly advanced property of select central nervous system neurons is their ability to exhibit increases in firing rate in relation to the mnemonic trace of a preceding event, a property that has been referred to as “working memory.” Single‐cell recordings from the prefrontal cortex of nonhuman primates have revealed neurons in the prefrontal cortex that possess “memory fields” analogous to the receptive field properties of sensory neurons. The integrity of these neurons has been shown to be essential for accurate performance in memory tasks performed by trained monkeys (and humans). We can now show that the excitability and/or tuning of these prefrontal neurons are subject to modulatory influences by dopamine, serotonin, GABA, and glutamate among other peptides and conventional neurotransmitters. I will describe the dopaminergic, serotonergic, and GABAergic innervation of pyramidal neurons engaged in working memory and the localization of neurotransmitter receptors through which they exert their actions. The findings reveal a remarkable degree of diversity in the subcellular localization and functionality of the five cloned dopamine receptors (D1, D2, D3, D4, and D5) and two serotonin (5HT2A and 5HT3) receptors that have been examined to date. The potential now exists for linking systems neurobiology with molecular biophysics to comprehend the highest functions of information processing that distinguish our species.

[1]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[2]  C. Cepeda,et al.  Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex , 1992, Synapse.

[3]  J. Fellous,et al.  A role for NMDA-receptor channels in working memory , 1998, Nature Neuroscience.

[4]  H. Niki,et al.  Prefrontal cortical unit activity and delayed alternation performance in monkeys. , 1971, Journal of neurophysiology.

[5]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[6]  J. Hell,et al.  Biochemical properties and subcellular distribution of an N-type calcium hannel α1 subunit , 1992, Neuron.

[7]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[8]  P. Goldman-Rakic,et al.  Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  J. Hell,et al.  Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  P S Goldman-Rakic,et al.  D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Hell,et al.  Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits , 1993, The Journal of cell biology.

[13]  M. Just,et al.  From the SelectedWorks of Marcel Adam Just 1992 A capacity theory of comprehension : Individual differences in working memory , 2017 .

[14]  P S Goldman-Rakic,et al.  5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[16]  P. Goldman-Rakic,et al.  Modulation of memory fields by dopamine Dl receptors in prefrontal cortex , 1995, Nature.

[17]  P. Goldman-Rakic,et al.  Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. Goldman-Rakic,et al.  Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. , 1993, Cerebral cortex.

[19]  P. Goldman-Rakic,et al.  Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task , 1993, Nature.

[20]  P. Goldman-Rakic,et al.  Areal segregation of face-processing neurons in prefrontal cortex. , 1997, Science.

[21]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  P. Calabresi,et al.  Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: Evidence for D1 receptor involvement , 1987, Neuroscience.

[23]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[24]  P S Goldman-Rakic,et al.  Widespread origin of the primate mesofrontal dopamine system. , 1998, Cerebral cortex.

[25]  C. Cepeda,et al.  Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. , 1998, Journal of neurophysiology.

[26]  P. Goldman-Rakic,et al.  Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. , 1993, Cerebral cortex.

[27]  P S Goldman-Rakic,et al.  Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Hyvärinen,et al.  Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. , 1969, Journal of neurophysiology.

[29]  H. Higashi,et al.  Hyperpolarizing and depolarizing actions of dopamine via D-1 and D-2 receptors on nucleus accumbens neurons , 1986, Brain Research.

[30]  W. Catterall,et al.  Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina , 1990, Neuron.

[31]  P S Goldman-Rakic,et al.  Light and electron microscopic characterization of dopamine‐immunoreactive axons in human cerebral cortex , 1992, The Journal of comparative neurology.

[32]  J. Fuster Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. , 1973, Journal of neurophysiology.

[33]  William A. Catterall,et al.  Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons , 1990, Nature.

[34]  C. Marsden,et al.  Internal versus external cues and the control of attention in Parkinson's disease. , 1988, Brain : a journal of neurology.

[35]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[36]  P. Greengard,et al.  Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons , 1995, Neuron.

[37]  P. Goldman-Rakic,et al.  The synaptology of parvalbumin‐immunoreactive neurons in the primate prefrontal cortex , 1992, The Journal of comparative neurology.

[38]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[39]  C. Marsden,et al.  'Frontal' cognitive function in patients with Parkinson's disease 'on' and 'off' levodopa. , 1988, Brain : a journal of neurology.

[40]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.