Volume exploration using ellipsoidal Gaussian transfer functions

This paper presents an interactive transfer function design tool based on ellipsoidal Gaussian transfer functions (ETFs). Our approach explores volumetric features in the statistical space by modeling the space using the Gaussian mixture model (GMM) with a small number of Gaussians to maximize the likelihood of feature separation. Instant visual feedback is possible by mapping these Gaussians to ETFs and analytically integrating these ETFs in the context of the pre-integrated volume rendering process. A suite of intuitive control widgets is designed to offer automatic transfer function generation and flexible manipulations, allowing an inexperienced user to easily explore undiscovered features with several simple interactions. Our GPU implementation demonstrates interactive performance and plausible scalability which compare favorably with existing solutions. The effectiveness of our approach has been verified on several datasets.

[1]  Kwan-Liu Ma,et al.  for Volume Classification and Visualization , 2009 .

[2]  David S. Ebert,et al.  Enhancing the Interactive Visualization of Procedurally Encoded Multifield Data with Ellipsoidal Basis Functions , 2006, Comput. Graph. Forum.

[3]  G. Kindlmann,et al.  Semi-automatic generation of transfer functions for direct volume rendering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[4]  Kwan-Liu Ma,et al.  Size-based Transfer Functions: A New Volume Exploration Technique , 2008, IEEE Transactions on Visualization and Computer Graphics.

[5]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[6]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[7]  Kwan-Liu Ma,et al.  An intelligent system approach to higher-dimensional classification of volume data , 2005, IEEE Transactions on Visualization and Computer Graphics.

[8]  Cüneyt Güzelis,et al.  Semiautomatic Transfer Function Initialization for Abdominal Visualization Using Self-Generating Hierarchical Radial Basis Function Networks , 2009, IEEE Transactions on Visualization and Computer Graphics.

[9]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[10]  Carl-Fredrik Westin,et al.  Tissue Classification Based on 3D Local Intensity Structures for Volume Rendering , 2000, IEEE Trans. Vis. Comput. Graph..

[11]  Kwan-Liu Ma,et al.  A framework for uncertainty-aware visual analytics , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[12]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[13]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[14]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[15]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[16]  Kwan-Liu Ma,et al.  A cluster-space visual interface for arbitrary dimensional classification of volume data , 2004, VISSYM'04.

[17]  David S. Ebert,et al.  Bivariate Transfer Functions on Unstructured Grids , 2009, Comput. Graph. Forum.

[18]  Marc Stamminger,et al.  Spatialized Transfer Functions , 2005, EuroVis.

[19]  David S. Ebert,et al.  Structuring Feature Space: A Non-Parametric Method for Volumetric Transfer Function Generation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[20]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[21]  Nikos A. Vlassis,et al.  Accelerated EM-based clustering of large data sets , 2006, Data Mining and Knowledge Discovery.

[22]  Kwan-Liu Ma,et al.  The Occlusion Spectrum for Volume Classification and Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[23]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[24]  Klaus Mueller,et al.  Color Design for Illustrative Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .