Cyclic transformation of orbital angular momentum modes

The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states.

[1]  Mateus Araújo,et al.  Computational advantage from quantum-controlled ordering of gates. , 2014, Physical review letters.

[2]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[3]  Marcus Huber,et al.  Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement , 2013, 1301.2455.

[4]  G. Vallone,et al.  Free-space quantum key distribution by rotation-invariant twisted photons. , 2014, Physical review letters.

[5]  M. Bandres,et al.  Cartesian beams. , 2007, Optics letters.

[6]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[7]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[8]  Robert W Boyd,et al.  Efficient separation of the orbital angular momentum eigenstates of light , 2013, Nature Communications.

[9]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[10]  Alexander Jesacher,et al.  Diffractive optical tweezers in the Fresnel regime. , 2004, Optics express.

[11]  Fabio Sciarrino,et al.  Experimental Implementation of a Kochen-Specker Set of Quantum Tests , 2012, 1209.1836.

[12]  J. Jeffers,et al.  Quantum Hilbert Hotel. , 2015, Physical review letters.

[13]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[14]  Julio C Gutiérrez-Vega,et al.  Ince-Gaussian beams. , 2004, Optics letters.

[15]  A. Zeilinger,et al.  Communication with spatially modulated light through turbulent air across Vienna , 2014, 1402.2602.

[16]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[17]  Anton Zeilinger,et al.  Experimental access to higher-dimensional entangled quantum systems using integrated optics , 2015, 1502.06504.

[18]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[19]  Robert Fickler,et al.  Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information , 2014, Nature Communications.

[20]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[21]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[22]  A. Zeilinger,et al.  Experimental non-classicality of an indivisible quantum system , 2011, Nature.

[23]  Jonathan Leach,et al.  Direct measurement of a 27-dimensional orbital-angular-momentum state vector , 2013, Nature Communications.

[24]  M. Żukowski,et al.  Secret sharing with a single d -level quantum system , 2015 .

[25]  Robert Fickler,et al.  Entangled singularity patterns of photons in Ince-Gauss modes , 2012, 1205.2514.

[26]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[27]  A. Zeilinger,et al.  Twisted photon entanglement through turbulent air across Vienna , 2015, Proceedings of the National Academy of Sciences.

[28]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[29]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[30]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[31]  Anders Karlsson,et al.  Quantum key distribution using multilevel encoding: security analysis , 2001 .

[32]  Robert W. Boyd,et al.  Quantum imaging technologies , 2014, 1406.1685.

[33]  Duncan A. Robertson,et al.  Rotational frequency shift of a light beam , 1998 .

[34]  Ebrahim Karimi,et al.  Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement , 2014, 1401.3512.

[35]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.