Recognition problems for special classes of polynomials in 0–1 variables

This paper investigates the complexity of various recognition problems for pseudo-Boolean functions (i.e., real-valued functions defined on the unit hypercubeBn = {0, 1}n), when such functions are represented as multilinear polynomials in their variables. Determining whether a pseudo-Boolean function (a) is monotonic, or (b) is supermodular, or (c) is threshold, or (d) has a unique local maximum in each face ofBn, or (e) has a unique local maximum inBn, is shown to be NP-hard. A polynomial-time recognition algorithm is presented for unimodular functions, previously introduced by Hansen and Simeone as a class of functions whose maximization overBn is reducible to a network minimum cut problem.

[1]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[2]  William H. Cunningham,et al.  Minimum cuts, modular functions, and matroid polyhedra , 1985, Networks.

[3]  Craig A. Tovey,et al.  Low order polynomial bounds on the expected performance of local improvement algorithms , 1986, Math. Program..

[4]  William H. Cunningham On submodular function minimization , 1985, Comb..

[5]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Giorgio Gallo,et al.  On the supermodular knapsack problem , 1989, Math. Program..

[8]  Peter L. Hammer,et al.  From Linear Separability to Unimodality: A Hierarchy of Pseudo-Boolean Functions , 1988, SIAM J. Discret. Math..

[9]  Alain Billionnet,et al.  Maximizing a supermodular pseudoboolean function: A polynomial algorithm for supermodular cubic functions , 1985, Discret. Appl. Math..

[10]  Peter L. Hammer A note on the monotonicity of pseudo-Boolean functions , 1974, Z. Oper. Research.

[11]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[12]  P. Hansen Methods of Nonlinear 0-1 Programming , 1979 .

[13]  Peter L. Hammer,et al.  Boolean Methods in Operations Research and Related Areas , 1968 .

[14]  C. Tovey Hill Climbing with Multiple Local Optima , 1985 .

[15]  D. J. Wilde,et al.  Discrete optimization on a multivariable boolean lattice , 1971, Math. Program..

[16]  Pierre Hansen,et al.  Unimodular functions , 1986, Discrete Applied Mathematics.