Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood

Abstract To aid in understanding black carbon (BC) formation during smoldering combustion in forest fires, we characterized charring of a softwood and hardwood. Charring (150, 340, 480 °C) caused mass loss (7–84%), enrichment of organic carbon (OC) (0–32%), and 13 C depletion (>150 °C). As determined by 13 C MAS NMR, the OC composition of the woods was dominated by (di)- O -alkyl structures, and the chars by alkyl and aromatic structures. With increasing temperature, aromatic structures increased and the chars became more similar, although initial differences in OC concentration and δ 13 C of woods persisted. The BC cluster sizes apparently remained small, pointing towards a low resistance against oxidation.

[1]  R. Newman,et al.  Solid-State 13C Nuclear Magnetic Resonance Characterization of Cellulose in the Cell Walls of Arabidopsis thaliana Leaves , 1996, Plant physiology.

[2]  J. Frielingsdorf,et al.  CARBON ISOTOPE BEHAVIOUR IN WOOD AND CELLULOSE DURING ARTIFICIAL AGING , 1999 .

[3]  W. Brand,et al.  ConFlo III – an interface for high precision δ13C and δ15N analysis with an extended dynamic range , 1999 .

[4]  D. H. Knight,et al.  Coarse Woody Debris following Fire and Logging in Wyoming Lodgepole Pine Forests , 2000, Ecosystems.

[5]  Ronald A. Susott,et al.  Thermal Behavior of Conifer Needle Extractives , 1980 .

[6]  K. Hirsch,et al.  Direct carbon emissions from Canadian forest fires, 1959-1999 , 2001 .

[7]  H. Griffiths,et al.  Carbon Isotope Discrimination and the Coupling of CO2 Fluxes within Forest Canopies , 1993 .

[8]  L. Ingram,et al.  Thermal Degradation of Terpenes: Camphene, Δ3-Carene, Limonene, and α-Terpinene , 1999 .

[9]  T. Bonagamba,et al.  Investigation of biomass- and polymer-based carbon materials using 13C high-resolution solid-state NMR , 2001 .

[10]  R. Hodson,et al.  Depletion of 13C in lignin and its implications for stable carbon isotope studies , 1987, Nature.

[11]  J. Skjemstad,et al.  The chemistry and nature of protected carbon in soil , 1996 .

[12]  Fred Shafizadeh,et al.  Chemistry of Pyrolysis and Combustion of Wood , 1982 .

[13]  J. Turunen,et al.  Carbon accumulation in West Siberian Mires, Russia Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years , 2001 .

[14]  R. Susott Characterization of the thermal properties of forest fuels by combustible gas analysis , 1982 .

[15]  Eric Croiset,et al.  High-Yield Biomass Charcoal† , 1996 .

[16]  H. Schmidt,et al.  Carbon isotope effects on the pyruvate dehydrogenase reaction and their importance for relative carbon-13 depletion in lipids. , 1987, The Journal of biological chemistry.

[17]  M. Hajaligol,et al.  Characterization of chars from biomass-derived materials: pectin chars , 2001 .

[18]  Eric S. Kasischke,et al.  The role of fire in the boreal carbon budget , 2000, Global change biology.

[19]  T. Rieckmann,et al.  Thermokinetic investigation of cellulose pyrolysis — impact of initial and final mass on kinetic results , 2002 .

[20]  F. Shafizadeh Pyrolysis and Combustion of Cellulosic Materials , 1968 .

[21]  G. Maciel,et al.  Carbon-13 nuclear magnetic resonance spectrometry with cross polarization and magic-angle spinning for analysis of lodgepole pine wood , 1982 .

[22]  M. Schnitzer,et al.  Thermogravimetry of soil humic compounds , 1965 .

[23]  Mark F. Davis,et al.  Solid-State 13CNuclear Magnetic Resonance Studies of Wood Decay. II. White Rot Decay of Paper Birch , 1994 .

[24]  E. Jakab,et al.  Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry , 1997 .

[25]  Thomas A. J. Kuhlbusch,et al.  Black Carbon and the Carbon Cycle , 1998, Science.

[26]  P. Roberts,et al.  The dependence of char and carbon yield on lignocellulosic precursor composition , 1982 .

[27]  F. González-Vila,et al.  13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment , 1996 .

[28]  T. Kuhlbusch,et al.  Method for determining black carbon in residues of vegetation fires. , 1995, Environmental science & technology.

[29]  Michael A. Wilson,et al.  Carbon distribution in coals and coal macerals by cross polarization magic angle spinning carbon-13 nuclear magnetic resonance spectrometry , 1984 .

[30]  M. Garstang,et al.  Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: laboratory studies , 1998 .

[31]  R. R. Willmers,et al.  Characterization of partially carbonized coals by solid-state 13C NMR and optical microscopy , 1998 .

[32]  Corinna Rebmann,et al.  Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink –‐ a synthesis , 1999 .

[33]  R. Bol,et al.  Molecular dynamics of organic matter in a cultivated soil. , 2002 .

[34]  H. J. Jakobsen,et al.  CP/MAS NMR at high speeds and high fields , 1988 .

[35]  C. Czimczik,et al.  Comparative analysis of black carbon in soils , 2001 .

[36]  E. Veenendaal,et al.  Stability of elemental carbon in a savanna soil , 1999 .

[37]  J. Nagy,et al.  Assignment of an average chemical structure to catalyst carbon deposits on the basis of quantitative 13C n.m.r. spectra , 1996 .

[38]  J. Andresen,et al.  Quantitative solid-state 13C n.m.r. measurements on cokes, chars and coal tar pitch fractions , 1996 .

[39]  F. González-Vila,et al.  Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass. , 2001, Journal of agricultural and food chemistry.

[40]  R. A. Burke,et al.  Using GC–MS/Combustion/IRMS to determine the 13C/12C ratios of individual hydrocarbons produced from the combustion of biomass materials—application to biomass burning , 1997 .

[41]  B. Simoneit,et al.  Evaluating levoglucosan as an indicator of biomass burning in Carajás, amazônia: a comparison to the charcoal record 2 2 Associate editor: R. Summons , 2001 .

[42]  Jeff Baldock,et al.  Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood , 2002 .

[43]  F. Shafizadeh,et al.  Structure and formation of cellulosic chars , 1983 .

[44]  P. Smith,et al.  Modelling refractory soil organic matter , 2000, Biology and Fertility of Soils.

[45]  Ingrid Kögel-Knabner,et al.  Charred organic carbon in German chernozemic soils , 1999 .

[46]  Georg Guggenberger,et al.  The 'Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics , 2001, Naturwissenschaften.

[47]  M. Schmidt,et al.  Plant compounds and their turnover and stability as soil organic matter , 2001 .

[48]  C. Preston Carbon-13 solid-state NMR of soil organic matter - using the technique effectively , 2001 .

[49]  H. Haynes,et al.  Carbon-13 solid-state n.m.r. investigation of coke deposits on spent catalysts used in coal liquefaction , 1996 .

[50]  J. Oades,et al.  The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter: 1. Model systems and the effects of paramagnetic impurities , 2000 .

[51]  Jaap J. Boon,et al.  Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study , 1994 .

[52]  K. H. Shafer,et al.  Gas evolution and the mechanism of cellulose pyrolysis , 2001 .

[53]  G. Mackay,et al.  Infrared study of inert carbonization of spruce wood lignin under helium atmosphere , 1984 .

[54]  R. Pugmire,et al.  Evolution of carbon structure in chemically activated wood , 1995 .

[55]  D. Anderson,et al.  Importance of charred organic matter in Black Chernozem soils of Saskatchewan , 2001 .

[56]  D. Grant,et al.  Structural Determination in Carbonaceous Solids Using Advanced Solid State NMR Techniques , 2001 .

[57]  J. Skjemstad,et al.  Estimation of charcoal (char) in soils , 1999 .

[58]  J. A. Trofymow,et al.  Harvesting and climate effects on organic matter characteristics in British Columbia coastal forests. , 2002, Journal of environmental quality.

[59]  M. Schmidt,et al.  Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges , 2000 .

[60]  J. Ehleringer,et al.  Carbon isotope ratios in belowground carbon cycle processes , 2000 .

[61]  W. Brand,et al.  Referencing strategies and techniques in stable isotope ratio analysis. , 2001, Rapid communications in mass spectrometry : RCM.

[62]  P. Fearnside,et al.  Burning of Amazonian rainforests: burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil , 2001 .

[63]  Sandy P. Harrison,et al.  Global Biogeochemical Cycles in the Climate System , 2001 .

[64]  F. Shafizadeh,et al.  Development of aromaticity in cellulosic chars , 1983 .

[65]  T. Fletcher,et al.  13C NMR Analysis of Soot Produced from Model Compounds and a Coal , 2001 .

[66]  P. Crutzen,et al.  Black carbon formation by savanna fires: Measurements and implications for the global carbon cycle , 1996 .

[67]  G. Maciel,et al.  Structural resolution in the carbon-13 nuclear magnetic resonance spectrometric analysis of coal by cross polarization and magic-angle spinning , 1982 .

[68]  P. Crutzen,et al.  Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2 , 1995 .

[69]  A. C. Buchanan,et al.  Impact of restricted mass transport on pyrolysis pathways for aryl ether containing lignin model compounds , 2000 .

[70]  C. Preston,et al.  Variability in litter quality and its relationship to litter decay in Canadian forests. , 2000 .

[71]  T. Bonagamba,et al.  13C high-resolution solid-state NMR study of peat carbonization , 1999 .

[72]  Mark F. Davis,et al.  Solid-State 13C Nuclear Magnetic Resonance Studies of Wood Decay. I. White Rot Decay of Colorado Blue Spruce , 1994 .

[73]  J. A. Trofymow,et al.  PMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island , 1998 .