Embedding large graphs into a random graph

In this paper we consider the problem of embedding almost-spanning, bounded degree graphs in a random graph. In particular, let Δ⩾5, e>0, and let H be a graph on (1−e)n vertices and with maximum degree Δ. We show that a random graph Gn,p with high probability contains a copy of H, provided that p≫(n−1log1/Δn)2/(Δ+1). Our assumption on p is optimal up to the polylog factor. We note that this polylog term matches the conjectured threshold for the spanning case.

[1]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[2]  David Conlon,et al.  Almost-spanning universality in random graphs , 2017, Random Struct. Algorithms.

[3]  J. Kahn,et al.  Factors in random graphs , 2008 .

[4]  Yoshiharu Kohayakawa,et al.  Universality and tolerance , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[5]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[6]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[7]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[8]  Kyle Luh,et al.  Optimal threshold for a random graph to be 2-universal , 2016, Transactions of the American Mathematical Society.

[9]  Noga Alon,et al.  Spanning subgraphs of random graphs , 1992, Graphs Comb..

[10]  Ueli Peter,et al.  Universality of random graphs and rainbow embedding , 2013, Random Struct. Algorithms.

[11]  B. Bollobás The evolution of random graphs , 1984 .

[12]  Béla Bollobás,et al.  Random Graphs , 1985 .

[13]  Ron Aharoni,et al.  Hall's theorem for hypergraphs , 2000, J. Graph Theory.

[14]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[15]  Domingos Dellamonica,et al.  Universality of random graphs , 2008, SODA '08.

[16]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[17]  R. Montgomery Embedding bounded degree spanning trees in random graphs , 2014, 1405.6559.

[18]  Jeff Kahn,et al.  Thresholds and Expectation Thresholds , 2007, Comb. Probab. Comput..