Combining background information and a top-down model for computing salient objects

Predicting the salient object region in real scenes has progressed significantly in recent years. In this work, we propose a novel method for computing salient object regions by combining background information and a top-down visual saliency model, which is well-suited for locating category-specific salient objects in cluttered real scenes. First, we used a robust background measure to acquire clean saliency maps by optimizing background information. Second, we learned a top-down saliency object model by combining a class-specific codebook and conditional random fields (CRFs) during the training phase. Furthermore, our model used the locality-constrained linear codes as latent CRF variables. Finally, we computed salient object regions by combining the robust background measure and top-down model. Experimental results on the Graz-02 and PASCAL VOC2007 datasets show that our method creates much better saliency maps than current state-of-the-art methods.

[1]  Mohan S. Kankanhalli,et al.  As-similar-as-possible saliency fusion , 2016, Multimedia Tools and Applications.

[2]  Jian Sun,et al.  Saliency Optimization from Robust Background Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Haibin Ling,et al.  Scale and Object Aware Image Thumbnailing , 2013, International Journal of Computer Vision.

[4]  Krista A. Ehinger,et al.  Modelling search for people in 900 scenes: A combined source model of eye guidance , 2009 .

[5]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[6]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[7]  Peter Auer,et al.  Generic object recognition with boosting , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[9]  Lie Lu,et al.  A generic framework of user attention model and its application in video summarization , 2005, IEEE Trans. Multim..

[10]  Nan Mu,et al.  Hierarchical salient object detection model using contrast-based saliency and color spatial distribution , 2015, Multimedia Tools and Applications.

[11]  Jing Xiao,et al.  Importance filtering for image retargeting , 2011, CVPR 2011.

[12]  Nazar Khan,et al.  Discriminative dictionary learning with spatial priors , 2013, 2013 IEEE International Conference on Image Processing.

[13]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[14]  Horst Bischof,et al.  Saliency driven total variation segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Li Xu,et al.  Hierarchical Saliency Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Ali Borji,et al.  What is a Salient Object? A Dataset and a Baseline Model for Salient Object Detection , 2014, IEEE Transactions on Image Processing.

[18]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  Vibhav Vineet,et al.  Efficient Salient Region Detection with Soft Image Abstraction , 2013, 2013 IEEE International Conference on Computer Vision.

[20]  Gabriela Csurka,et al.  A framework for visual saliency detection with applications to image thumbnailing , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[21]  Wen J. Li,et al.  Salient object detection based on regions , 2012, Multimedia Tools and Applications.

[22]  Pichao Wang,et al.  Salient object detection using color spatial distribution and minimum spanning tree weight , 2015, Multimedia Tools and Applications.

[23]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[25]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[27]  Vladimir Kolmogorov,et al.  "GrabCut": interactive foreground extraction using iterated graph cuts , 2004, ACM Trans. Graph..

[28]  Aykut Erdem,et al.  Top down saliency estimation via superpixel-based discriminative dictionaries , 2014, BMVC.

[29]  No Value,et al.  IEEE International Conference on Image Processing , 2003 .

[30]  Jingdong Wang,et al.  Salient Object Detection: A Discriminative Regional Feature Integration Approach , 2013, International Journal of Computer Vision.

[31]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[32]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[33]  Zhen Yang,et al.  Computing object-based saliency via locality-constrained linear coding and conditional random fields , 2017, The Visual Computer.

[34]  Huchuan Lu,et al.  Saliency Detection via Graph-Based Manifold Ranking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Moncef Gabbouj,et al.  Extended quantum cuts for unsupervised salient object extraction , 2016, Multimedia Tools and Applications.

[36]  Thorsten Joachims,et al.  Cutting-plane training of structural SVMs , 2009, Machine Learning.

[37]  Paul Bodesheim Spectral Clustering of ROIs for Object Discovery , 2011, DAGM-Symposium.

[38]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Zhen Yang,et al.  Image classification based on saliency coding with category-specific codebooks , 2016, Neurocomputing.

[40]  OzanEzgi Can,et al.  Extended quantum cuts for unsupervised salient object extraction , 2017 .

[41]  Bo Wu,et al.  Integrating bottom-up and top-down visual stimulus for saliency detection in news video , 2013, Multimedia Tools and Applications.

[42]  Jian Sun,et al.  Geodesic Saliency Using Background Priors , 2012, ECCV.

[43]  Nuno Vasconcelos,et al.  Discriminant Saliency, the Detection of Suspicious Coincidences, and Applications to Visual Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Lihi Zelnik-Manor,et al.  Context-Aware Saliency Detection , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Matthew H Tong,et al.  SUN: Top-down saliency using natural statistics , 2009, Visual cognition.

[46]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[47]  Ming-Hsuan Yang,et al.  Top-down visual saliency via joint CRF and dictionary learning , 2012, CVPR.

[48]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[49]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.