The equilibrium measure for an anisotropic nonlocal energy

[1]  J. Verdera,et al.  A maximum-principle approach to the minimisation of a nonlocal dislocation energy , 2020, Mathematics in Engineering.

[2]  J. Carrillo,et al.  Existence of ground states for aggregation-diffusion equations , 2018, Analysis and Applications.

[3]  J. Carrillo,et al.  The Ellipse Law: Kirchhoff Meets Dislocations , 2017, Communications in Mathematical Physics.

[4]  J. Carrillo,et al.  Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics , 2016, Inventiones mathematicae.

[5]  L. Scardia,et al.  The Equilibrium Measure for a Nonlocal Dislocation Energy , 2016, Communications on Pure and Applied Mathematics.

[6]  Young-Pil Choi,et al.  Mean-field limit for collective behavior models with sharp sensitivity regions , 2015, Journal of the European Mathematical Society.

[7]  Mark A. Peletier,et al.  Convergence of Interaction-Driven Evolutions of Dislocations with Wasserstein Dissipation and Slip-Plane Confinement , 2014, SIAM J. Math. Anal..

[8]  Martin Burger,et al.  Pattern formation of a nonlocal, anisotropic interaction model , 2016, 1610.08108.

[9]  S. Luckhaus,et al.  An Energy Estimate for Dislocation Configurations and the Emergence of Cosserat-Type Structures in Metal Plasticity , 2016, 1608.06155.

[10]  J. Carrillo,et al.  Explicit equilibrium solutions for the aggregation equation with power-law potentials , 2016, 1602.06615.

[11]  Giovanni Di Fratta,et al.  The Newtonian potential and the demagnetizing factors of the general ellipsoid , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  G. Fratta The Newtonian potential and the demagnetizing factors of the general ellipsoid , 2015, 1505.04970.

[13]  J. Carrillo,et al.  Existence of Compactly Supported Global Minimisers for the Interaction Energy , 2014, 1405.5428.

[14]  D. Slepčev,et al.  Existence of Ground States of Nonlocal-Interaction Energies , 2014, 1405.5146.

[15]  José A. Carrillo,et al.  Ground States for Diffusion Dominated Free Energies with Logarithmic Interaction , 2014, SIAM J. Math. Anal..

[16]  J. Carrillo,et al.  Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems , 2014, 1406.4040.

[17]  Djalil CHAFAÏ,et al.  First order global asymptotics for confined particles with singular pair repulsion , 2013, 1304.7569.

[18]  J. Verdera,et al.  On rotating doubly connected vortices , 2013, 1310.0335.

[19]  J. Carrillo,et al.  Dimensionality of Local Minimizers of the Interaction Energy , 2012, 1210.6795.

[20]  A. Albanese,et al.  Tesi di Laurea Magistrale in Matematica , 2013 .

[21]  C. Hemelrijk,et al.  Simulations of the social organization of large schools of fish whose perception is obstructed , 2012 .

[22]  Razvan C. Fetecau,et al.  Swarm dynamics and equilibria for a nonlocal aggregation model , 2011 .

[23]  Walter Kaiser,et al.  Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees , 1981, Journal of comparative physiology.

[24]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.

[25]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[26]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[27]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[28]  G. Folland Introduction to Partial Differential Equations , 1976 .

[29]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[30]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[31]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[32]  Otto Frostman Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .

[33]  O. D. Kellogg Foundations of potential theory , 1934, The Mathematical Gazette.