The equilibrium measure for an anisotropic nonlocal energy
暂无分享,去创建一个
J. Carrillo | J. Verdera | L. Scardia | L. Rondi | M. G. Mora | J. Mateu | José A. Carrillo | Maria Giovanna Mora | Luca Rondi
[1] J. Verdera,et al. A maximum-principle approach to the minimisation of a nonlocal dislocation energy , 2020, Mathematics in Engineering.
[2] J. Carrillo,et al. Existence of ground states for aggregation-diffusion equations , 2018, Analysis and Applications.
[3] J. Carrillo,et al. The Ellipse Law: Kirchhoff Meets Dislocations , 2017, Communications in Mathematical Physics.
[4] J. Carrillo,et al. Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics , 2016, Inventiones mathematicae.
[5] L. Scardia,et al. The Equilibrium Measure for a Nonlocal Dislocation Energy , 2016, Communications on Pure and Applied Mathematics.
[6] Young-Pil Choi,et al. Mean-field limit for collective behavior models with sharp sensitivity regions , 2015, Journal of the European Mathematical Society.
[7] Mark A. Peletier,et al. Convergence of Interaction-Driven Evolutions of Dislocations with Wasserstein Dissipation and Slip-Plane Confinement , 2014, SIAM J. Math. Anal..
[8] Martin Burger,et al. Pattern formation of a nonlocal, anisotropic interaction model , 2016, 1610.08108.
[9] S. Luckhaus,et al. An Energy Estimate for Dislocation Configurations and the Emergence of Cosserat-Type Structures in Metal Plasticity , 2016, 1608.06155.
[10] J. Carrillo,et al. Explicit equilibrium solutions for the aggregation equation with power-law potentials , 2016, 1602.06615.
[11] Giovanni Di Fratta,et al. The Newtonian potential and the demagnetizing factors of the general ellipsoid , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[12] G. Fratta. The Newtonian potential and the demagnetizing factors of the general ellipsoid , 2015, 1505.04970.
[13] J. Carrillo,et al. Existence of Compactly Supported Global Minimisers for the Interaction Energy , 2014, 1405.5428.
[14] D. Slepčev,et al. Existence of Ground States of Nonlocal-Interaction Energies , 2014, 1405.5146.
[15] José A. Carrillo,et al. Ground States for Diffusion Dominated Free Energies with Logarithmic Interaction , 2014, SIAM J. Math. Anal..
[16] J. Carrillo,et al. Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems , 2014, 1406.4040.
[17] Djalil CHAFAÏ,et al. First order global asymptotics for confined particles with singular pair repulsion , 2013, 1304.7569.
[18] J. Verdera,et al. On rotating doubly connected vortices , 2013, 1310.0335.
[19] J. Carrillo,et al. Dimensionality of Local Minimizers of the Interaction Energy , 2012, 1210.6795.
[20] A. Albanese,et al. Tesi di Laurea Magistrale in Matematica , 2013 .
[21] C. Hemelrijk,et al. Simulations of the social organization of large schools of fish whose perception is obstructed , 2012 .
[22] Razvan C. Fetecau,et al. Swarm dynamics and equilibria for a nonlocal aggregation model , 2011 .
[23] Walter Kaiser,et al. Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees , 1981, Journal of comparative physiology.
[24] E. Saff,et al. Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.
[25] Gianni Dal Maso,et al. An Introduction to [gamma]-convergence , 1993 .
[26] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[27] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[28] G. Folland. Introduction to Partial Differential Equations , 1976 .
[29] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[30] Jens Lothe John Price Hirth,et al. Theory of Dislocations , 1968 .
[31] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[32] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .
[33] O. D. Kellogg. Foundations of potential theory , 1934, The Mathematical Gazette.