Fe/Zr-MOFs constructed by a sunlight-responsive ligand for efficient photocatalytic nitrogen fixation under ambient condition.

[1]  Liang Chen,et al.  Efficient Sunlight Promoted Nitrogen Fixation from Air Under Room Temperature and Ambient Pressure Via Ti/Mocomposites , 2022, SSRN Electronic Journal.

[2]  Y. Tong,et al.  Lanthanide-Based Dual Modulation in Hematite Nanospindles for Enhancing the Photocatalytic Performance , 2022, ACS Applied Nano Materials.

[3]  Huijian Zheng,et al.  High efficient all-day nitrogen fixation from air promoted by natural light and sea urchin-like Cobalt oxide photocatalyst under room temperature and atmosphere pressure , 2022, Molecular Catalysis.

[4]  K. Parida,et al.  MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications , 2022, Coordination Chemistry Reviews.

[5]  Jinhua Ye,et al.  Surface Modification of 2D Photocatalysts for Solar Energy Conversion , 2022, Advanced materials.

[6]  P. Raizada,et al.  Current status of Hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications , 2022, Journal of Environmental Chemical Engineering.

[7]  Yang Liu,et al.  Recent advances in photocatalytic nitrogen fixation and beyond. , 2022, Nanoscale.

[8]  Shanqing Zhang,et al.  New Findings for the Much‐Promised Hematite Photoanodes with Gradient Doping and Overlayer Elaboration , 2022, Solar RRL.

[9]  Hui Zheng,et al.  Nitrogen fixation from air at normal temperature and pressure via Cobalt-iron photocatalyst day and night , 2022, Molecular Catalysis.

[10]  E. Klaseboer,et al.  A Non‐Singular, Field‐Only Surface Integral Method for Interactions between Electric and Magnetic Dipoles and Nano‐Structures , 2021, Annalen der Physik.

[11]  Q. Zhong,et al.  Fe-carbon dots enhance the photocatalytic nitrogen fixation activity of TiO2@CN heterojunction , 2022, Chemical Engineering Journal.

[12]  Wei Zhou,et al.  Recent advances in core–shell metal organic frame-based photocatalysts for solar energy conversion , 2021 .

[13]  Zhihui Zhang,et al.  Recent Advances in MOF‐based Materials for Photocatalytic Nitrogen Fixation , 2021, European Journal of Inorganic Chemistry.

[14]  N. Amdursky,et al.  Tailoring QDs Sizes for Optimal Photoinduced Catalytic Activation of Nitrogenase. , 2021, ChemSusChem.

[15]  Jian‐Rong Li,et al.  Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review , 2021 .

[16]  Haixin Chang,et al.  Engineering of bionic Fe/Mo bimetallene for boosting the photocatalytic nitrogen reduction performance. , 2021, Journal of colloid and interface science.

[17]  Jiaguo Yu,et al.  Hydrogen-bond activation of N2 molecules and photocatalytic nitrogen fixation , 2021, Chem.

[18]  Hua-ming Li,et al.  Oxygen Vacancies in Bi2Sn2O7 Quantum Dots to Trigger Efficient Photocatalytic Nitrogen Reduction , 2021, Applied Catalysis B: Environmental.

[19]  Zhen Li,et al.  Plasmonic gold nanocrystals simulated efficient photocatalytic nitrogen fixation over Mo doped W18O49 nanowires , 2021 .

[20]  Xiazhang Li,et al.  In situ construction of Fe substituted palygorskite/FeS2 heterostructure for full-spectrum photocatalytic nitrogen fixation , 2021 .

[21]  U. Ryde,et al.  Quantum-refinement studies of the bidentate ligand of V‑nitrogenase and the protonation state of CO-inhibited Mo‑nitrogenase. , 2021, Journal of inorganic biochemistry.

[22]  Bei Long,et al.  Designed synthesis of a porous ultrathin 2D CN@graphene@CN sandwich structure for superior photocatalytic hydrogen evolution under visible light , 2021 .

[23]  Xu‐Bing Li,et al.  Nitrogenase inspired artificial photosynthetic nitrogen fixation , 2020, Chem.

[24]  Zhongyi Jiang,et al.  Nitrogenase-inspired bimetallic metal organic frameworks for visible-light-driven nitrogen fixation , 2021 .

[25]  Yuliang Li,et al.  Graphdiyne@Janus Magnetite for Photocatalysis Nitrogen Fixation. , 2020, Angewandte Chemie.

[26]  Zhongyi Jiang,et al.  Nitrogenase-inspired mixed-valence MIL-53(FeII/FeIII) for photocatalytic nitrogen fixation , 2020 .

[27]  Shanqing Zhang,et al.  Constructing Fe-MOF-Derived Z-scheme Photocatalysts with Enhanced Charge Transport: Nanointerface and Carbon Sheath Synergistic Effect. , 2020, ACS applied materials & interfaces.

[28]  Zhiqun Lin,et al.  Nanostructured photocatalysts for nitrogen fixation , 2020 .

[29]  J. Bellenger,et al.  Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review , 2020, Biogeochemistry.

[30]  E. Klaseboer,et al.  Field-only surface integral equations: scattering from a perfect electric conductor. , 2019, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  E. Klaseboer,et al.  Field-only surface integral equations: scattering from a dielectric body. , 2019, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Xiufang Zhang,et al.  Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation , 2019, Applied Catalysis B: Environmental.

[33]  Y. Jiao,et al.  Promoting the spatial charge separation by building porous ZrO2@TiO2 heterostructure toward photocatalytic hydrogen evolution. , 2019, Journal of colloid and interface science.

[34]  Geoffrey I N Waterhouse,et al.  Photocatalytic ammonia synthesis: Recent progress and future , 2019, EnergyChem.

[35]  Bin Zhao,et al.  Applications of MOFs: Recent advances in photocatalytic hydrogen production from water , 2019, Coordination Chemistry Reviews.

[36]  B. Mohan,et al.  ZrO2/Fe2O3/RGO nanocomposite: Good photocatalyst for dyes degradation , 2019, Physica E: Low-dimensional Systems and Nanostructures.

[37]  Feng Jiao,et al.  Electrochemical Ammonia Synthesis and Ammonia Fuel Cells , 2018, Advanced materials.

[38]  W. Liu,et al.  Tailor‐Made Microporous Metal–Organic Frameworks for the Full Separation of Propane from Propylene Through Selective Size Exclusion , 2018, Advanced materials.

[39]  Y. Chabal,et al.  Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers , 2018, Nature Communications.

[40]  Zhong Li,et al.  Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs) , 2017 .

[41]  P. Ajayan,et al.  High Efficiency Photocatalytic Water Splitting Using 2D α‐Fe2O3/g‐C3N4 Z‐Scheme Catalysts , 2017 .

[42]  Wanhong Ma,et al.  Resin modified MIL-53 (Fe) MOF for improvement of photocatalytic performance , 2017 .

[43]  E. Klaseboer,et al.  Robust multiscale field-only formulation of electromagnetic scattering , 2016, 1611.01978.

[44]  E. Klaseboer,et al.  Nonsingular Field-Only Surface Integral Equations for Electromagnetic Scattering , 2016, IEEE Transactions on Antennas and Propagation.

[45]  Hongbing Ji,et al.  Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions , 2016 .

[46]  P. Chindaudom,et al.  Determination of Optical and Physical Properties of ZrO2 Films by Spectroscopic Ellipsometry , 2012 .