Phenotypic and genetic characterization of adult T-cell acute lymphoblastic leukemia with del(9)(q34);SET-NUP214 rearrangement

[1]  J. Choi,et al.  Molecular characterization of alternative SET-NUP214 fusion transcripts in a case of acute undifferentiated leukemia. , 2010, Cancer genetics and cytogenetics.

[2]  R. Foà,et al.  Combined interphase fluorescence in situ hybridization elucidates the genetic heterogeneity of T-cell acute lymphoblastic leukemia in adults , 2010, Haematologica.

[3]  K. Seiter Update of recent studies in chronic myeloid leukemia , 2009, Journal of Hematology & Oncology.

[4]  H. Drexler,et al.  SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines , 2009, Journal of hematology & oncology.

[5]  I. Sarikaya,et al.  Radical cyberknife radiosurgery with tumor tracking: an effective treatment for inoperable small peripheral stage I non-small cell lung cancer , 2009, Journal of hematology & oncology.

[6]  P. Aplan,et al.  The role of CALM–AF10 gene fusion in acute leukemia , 2008, Leukemia.

[7]  K. Nagata,et al.  Impairment of erythroid and megakaryocytic differentiation by a Leukemia‐Associated and t(9;9)‐derived fusion gene product, SET/TAF‐Iβ‐CAN/Nup214 , 2008, Journal of cellular physiology.

[8]  Andrew P. Stubbs,et al.  The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. , 2007, Blood.

[9]  R. Fodde,et al.  SET-CAN, the product of the t(9;9) in acute undifferentiated leukemia, causes expansion of early hematopoietic progenitors and hyperproliferation of stomach mucosa in transgenic mice. , 2007, The American journal of pathology.

[10]  C. Mecucci,et al.  Cryptic chromosome 9q34 deletion generates TAF-Ialpha/CAN and TAF-Ibeta/CAN fusion transcripts in acute myeloid leukemia. , 2007 .

[11]  P. Marynen,et al.  Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. , 2005, Haematologica.

[12]  G. Grosveld,et al.  Effects of SET and SET-CAN on the differentiation of the human promonocytic cell line U937 , 2004, Leukemia.

[13]  M Hummel,et al.  Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936 , 2003, Leukemia.

[14]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[15]  R. Rimokh,et al.  Molecular analysis of cyclin-dependent kinase inhibitors in human leukemias , 1997, Leukemia.

[16]  H. Sather,et al.  Clinical features and treatment outcome of children with myeloid antigen positive acute lymphoblastic leukemia: a report from the Children's Cancer Group. , 1997, Blood.

[17]  M. Höglund,et al.  Deletions of CDKN1B and ETV6 in acute myeloid leukemia and myelodysplastic syndromes without cytogenetic evidence of 12p abnormalities , 1997, Genes, chromosomes & cancer.

[18]  G. Grosveld,et al.  Characterization of the translocation breakpoint sequences of two DEK‐CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET‐CAN fusion gene found in a case of acute undifferentiated leukemia , 1992, Genes, chromosomes & cancer.

[19]  J. V. van Dongen,et al.  Immunoglobulin and T-cell receptor gene rearrangements in acute non-lymphocytic leukemias. Analysis of 54 cases and a review of the literature. , 1991, Leukemia.

[20]  J. Dongen,et al.  Expression of the myeloid differentiation antigen CD33 depends on the presence of human chromosome 19 in human‐mouse hybrids , 1990, Annals of human genetics.