Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East

Abstract High temporal resolution observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), on the Meteosat Second Generation satellites, can offer new insights into the processes governing the behaviour of dust sources. Here we evaluate a multi-year, high time-resolution record of dust flagging and dust aerosol optical depth (DAOD) derived from SEVIRI to identify diurnal patterns of dust loading, and diagnose issues with the dust retrievals over North Africa and Arabia. The original dust detection scheme falsely flags dust in regions of high 8.7 μm emissivity. The implementation of an updated scheme mitigates this by making use of the mean 10.8-8.7 μm brightness temperature difference in order to isolate airborne dust from rocky surfaces. Comparing the DAODs (at 550 nm) retrieved using the different schemes with co-located AERONET observations, the impact is relatively small (RMS

[1]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[2]  D. Corney,et al.  The Geostationary Earth Radiation Budget project , 2005 .

[3]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[4]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[5]  Richard Washington,et al.  Dust and the low‐level circulation over the Bodélé Depression, Chad: Observations from BoDEx 2005 , 2006 .

[6]  Oleg Dubovik,et al.  Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005 , 2007 .

[7]  Nick Middleton,et al.  Desert Dust in the Global System , 2006 .

[8]  Itamar M. Lensky,et al.  Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT) , 2008 .

[9]  H. Brindley Estimating the top‐of‐atmosphere longwave radiative forcing due to Saharan dust from satellite observations over a west African surface site , 2007 .

[10]  Eva Borbas,et al.  Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements , 2008 .

[11]  Richard Washington,et al.  Atmospheric controls on the annual cycle of North African dust , 2007 .

[12]  R. Chester,et al.  Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications , 1997 .

[13]  J. Schmetz,et al.  AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .

[14]  Paul Ginoux,et al.  Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data , 2010 .

[15]  Steven A. Ackerman,et al.  Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks , 1989 .

[16]  J. Martins,et al.  Meteorology and dust in the central Sahara: Observations from Fennec supersite‐1 during the June 2011 Intensive Observation Period , 2013 .

[17]  P. Formenti,et al.  Physico‐chemical and optical properties of Sahelian and Saharan mineral dust: in situ measurements during the GERBILS campaign , 2011 .

[18]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[19]  M. Derrien,et al.  MSG/SEVIRI cloud mask and type from SAFNWC , 2005 .

[20]  M. Kuisi,et al.  Characterization of the Khamaseen (spring) dust in Jordan , 2009 .

[21]  Peter Knippertz,et al.  The importance of the representation of deep convection for modeled dust‐generating winds over West Africa during summer , 2011 .

[22]  Sundar A. Christopher,et al.  Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign , 2011 .

[23]  Andreas Macke,et al.  Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models , 2009 .

[24]  Crystal B. Schaaf,et al.  The solar zenith angle dependence of desert albedo , 2005 .

[25]  K. Schepanski,et al.  A new Saharan dust source activation frequency map derived from MSG‐SEVIRI IR‐channels , 2007 .

[26]  S. Liang,et al.  An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing Observations , 2006 .

[27]  Michael J. Pavolonis,et al.  Development of a new over‐water Advanced Very High Resolution Radiometer dust detection algorithm , 2006 .

[28]  D. Winker,et al.  A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements , 2008 .

[29]  John E. Harries,et al.  Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance , 2006 .

[30]  A. Ipe,et al.  Validation and homogenization of cloud optical depth and cloud fraction retrievals for GERB/SEVIRI scene identification using Meteosat-7 data , 2004 .

[31]  Mian Chin,et al.  Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation , 2004, Environ. Model. Softw..

[32]  J. Herman,et al.  Determination of Radiative Forcing of Saharan Dust Using Combined Toms and Erbe Data , 2013 .

[33]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[34]  Richard Washington,et al.  An automated dust detection using SEVIRI: A multiyear climatology of summertime dustiness in the central and western Sahara , 2012 .

[35]  Alfred J Prata,et al.  Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data , 1989 .

[36]  C. Thorncroft,et al.  African Monsoon Multidisciplinary Analysis: An International Research Project and Field Campaign , 2006 .

[37]  Helen Brindley,et al.  A critical evaluation of the ability of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal infrared red-green-blue rendering to identify dust events: theoretical analysis , 2012 .

[38]  J. E. Russell,et al.  An assessment of Saharan dust loading and the corresponding cloud‐free longwave direct radiative effect from geostationary satellite observations , 2009 .

[39]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[40]  Christopher J. Merchant,et al.  Saharan dust in nighttime thermal imagery: Detection and reduction of related biases in retrieved sea surface temperature , 2006 .

[41]  Richard A. Frey,et al.  Relative merits of the 1.6 and 3.75 μm channels of the AVHRR/3 for cloud detection , 2004 .

[42]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[43]  S. Miller A consolidated technique for enhancing desert dust storms with MODIS , 2003 .

[44]  R. Washington,et al.  Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations , 2003 .

[45]  David J. Diner,et al.  Comparison of MISR and AERONET aerosol optical depths over desert sites , 2003 .

[46]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[47]  Richard Washington,et al.  North African dust emissions and transport , 2006 .

[48]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[49]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .