An Approximate Algorithm for Solving the Watchman Route Problem

The watchman route problem (WRP) was first introduced in 1988 and is defined as follows: How to calculate a shortest route completely contained inside a simple polygon such that any point inside this polygon is visible from at least one point on the route? So far the best known result for the WRP is an O(n(3) log n) runtime algorithm (with inherent numerical problems of its implementation). This paper gives an k(epsilon) x O(kn) approximate algorithm for WRP by using a rubberband algorithm, where n is the number of vertices of the simple polygon, k the number of essential cuts, epsilon the chosen accuracy constant for the minimization of the calculated route, and k(epsilon) equals the length of the initial route minus the length of the calculated route, divided by epsilon.

[1]  Simeon C. Ntafos,et al.  External watchman routes , 1994, The Visual Computer.

[2]  Simeon C. Ntafos,et al.  Optimum Watchman Routes , 1988, Inf. Process. Lett..

[3]  Tomio Hirata,et al.  An incremental algorithm for constructing shortest watchman routes , 1993, Int. J. Comput. Geom. Appl..

[4]  Svante Carlsson,et al.  Optimum Guard Covers and m-Watchmen Routes for Restricted Polygons , 1991, WADS.

[5]  Bengt J. Nilsson,et al.  Concerning the Time Bounds of Existing Shortest Watchman Route Algorithms , 1997, FCT.

[6]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[7]  C. E. Veni Madhavan,et al.  Shortest Watchman Tours in Weak Visibility Polygons , 1993, CCCG.

[8]  D. T. Lee,et al.  Finding an Approximate Minimum-Link Visibility Path Inside a Simple Polygon , 1995, Inf. Process. Lett..

[9]  XUEHOU TAN,et al.  Corrigendum to "An Incremental Algorithm for Constructing Shortest Watchman Routes" , 1999, Int. J. Comput. Geom. Appl..

[10]  Wei-Pand Chin,et al.  Shortest watchman routes in simple polygons , 1990, Discret. Comput. Geom..

[11]  Simeon Ntafos,et al.  Watchman routes under limited visibility , 1992 .

[12]  D. T. Lee,et al.  Minimal Link Visibility Paths Inside a Simple Polygon , 1993, Comput. Geom..

[13]  Theral O. Moore,et al.  Elementary General Topology , 1965 .

[14]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[15]  Xuehou Tan,et al.  Linear-Time 2-Approximation Algorithm for the Watchman Route Problem , 2006, TAMC.

[16]  Tomio Hirata,et al.  Constructing Shortest Watchman Routes by Divide-and-Conquer , 1993, ISAAC.

[17]  Simeon C. Ntafos,et al.  The Robber Route Problem , 1990, Inf. Process. Lett..

[18]  Robin Milner An Action Structure for Synchronous pi-Calculus , 1993, FCT.

[19]  Svante Carlsson,et al.  Finding the Shortest Watchman Route in a Simple Polygon , 1993, ISAAC.

[20]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[21]  Avraham A. Melkman,et al.  On-Line Construction of the Convex Hull of a Simple Polyline , 1987, Inf. Process. Lett..

[22]  Moshe Dror,et al.  Touring a sequence of polygons , 2003, STOC '03.

[23]  Joseph S. B. Mitchell,et al.  Approximation algorithms for geometric tour and network design problems (extended abstract) , 1995, SCG '95.

[24]  Reinhard Klette,et al.  Exact and approximate algorithms for the calculation of shortest paths , 2006 .

[25]  Xuehou Tan,et al.  Fast computation of shortest watchman routes in simple polygons , 2001, Inf. Process. Lett..

[26]  Simeon C. Ntafos,et al.  Watchman Routes in the Presence of a Pair of Convex Polygons , 1998, Inf. Sci..

[27]  Svante Carlsson,et al.  Computing a Shortest Watchman Path in a Simple Polygon in Polynomial-Time , 1995, WADS.

[28]  Xuehou Tan,et al.  Approximation algorithms for the watchman route and zookeeper's problems , 2001, Discret. Appl. Math..

[29]  Bengt J. Nilssony,et al.  Optimum Watchmen Routes in Spiral Polygons , 2007 .

[30]  Esther M. Arkin,et al.  Minimum-link watchman tours , 2003, Inf. Process. Lett..

[31]  Hazel Everett,et al.  The Aquarium Keeper's Problem , 1991, SODA '91.

[32]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[33]  Tetsuo Asano,et al.  Visibility in the Plane , 2000, Handbook of Computational Geometry.

[34]  Joseph S. B. Mitchell,et al.  Path Planning in 0/1/ Weighted Regions with Applications , 1990, INFORMS J. Comput..